DOI QR코드

DOI QR Code

Chikungunya Virus-Encoded nsP2, E2 and E1 Strongly Antagonize the Interferon-β Signaling Pathway

  • Bae, Sojung (Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University) ;
  • Lee, Jeong Yoon (Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University) ;
  • Myoung, Jinjong (Korea Zoonosis Research Institute, Genetic Engineering Research Institute and Department of Bioactive Material Science, Jeonbuk National University)
  • Received : 2019.10.10
  • Accepted : 2019.10.21
  • Published : 2019.11.28

Abstract

Chikungunya virus (CHIKV) is a single-stranded positive-sense RNA virus, belonging to the genus Alphavirus of the Togaviridae family. It causes multiple symptoms, including headache, fever, severe joint and muscle pain, and arthralgia. Since CHIKV was first isolated in Tanzania in 1952, there have been multiple outbreaks of chikungunya fever. However, its pathogenesis and mechanisms of viral immune evasion have been poorly understood. In addition, the exact roles of individual CHIKV genes on the host innate immune response remain largely unknown. To investigate if CHIKV-encoded genes modulate the type I interferon (IFN) response, each and every CHIKV gene was screened for its effects on the induction of the IFN-β promoter. Here we report that CHIKV nsP2, E2 and E1 strongly suppressed activation of the IFN-β promoter induced by the MDA5/RIG-I receptor signaling pathway, suggesting that nsP2, E2, and E1 are the major antagonists against induction of IFN-β. Delineation of underlying mechanisms of CHIKV-mediated inhibition of the IFN-β pathway may help develop virus-specific therapeutics and vaccines.

Keywords

References

  1. Robinson MC. 1955. An epidemic of virus disease in Southern Province, Tanganyika Territory, in 1952-53. I. Clinical features. Trans. R Soc. Trop. Med. Hyg. 49: 28-32. https://doi.org/10.1016/0035-9203(55)90080-8
  2. Burt FJ, Rolph MS, Rulli NE, Mahalingam S, Heise MT. 2012. Chikungunya: a re-emerging virus. Lancet 379: 662-671. https://doi.org/10.1016/S0140-6736(11)60281-X
  3. Schwartz O, Albert ML. 2010. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol. 8: 491-500. https://doi.org/10.1038/nrmicro2368
  4. Manore CA, Hickmann KS, Xu S, Wearing HJ, Hyman JM. 2014. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J. Theor. Biol. 356: 174-191. https://doi.org/10.1016/j.jtbi.2014.04.033
  5. Silva LA, Dermody TS. 2017. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J. Clin. Invest. 127: 737-749. https://doi.org/10.1172/JCI84417
  6. Gibney KB, Fischer M, Prince HE, Kramer LD, St George K, Kosoy OL, et al. 2011. Chikungunya fever in the United States: a fifteen year review of cases. Clin. Infect. Dis. 52: e121-126. https://doi.org/10.1093/cid/ciq214
  7. Rezza G, Nicoletti L, Angelini R, Romi R, Finarelli AC, Panning M, et al. 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet 370: 1840-1846. https://doi.org/10.1016/S0140-6736(07)61779-6
  8. Grandadam M, Caro V, Plumet S, Thiberge JM, Souares Y, Failloux AB, et al. 2011. Chikungunya virus, southeastern France. Emerg. Infect. Dis. 17: 910-913. https://doi.org/10.3201/eid1705.101873
  9. Moizeis RNC, Fernandes T, Guedes P, Pereira HWB, Lanza DCF, Azevedo JWV, et al. 2018. Chikungunya fever: a threat to global public health. Pathog. Glob. Health. 112: 182-194. https://doi.org/10.1080/20477724.2018.1478777
  10. Law YS, U tt A, Tan YB, Zheng J, Wang S, Chen MW, et al. 2019. Structural insights into RNA recognition by the Chikungunya virus nsP2 helicase. Proc. Natl. Acad. Sci. USA 116: 9558-9567. https://doi.org/10.1073/pnas.1900656116
  11. Strauss JH, Strauss EG. 1994. The alphaviruses: gene expression, replication, and evolution. Microbiol. Rev. 58: 491-562. https://doi.org/10.1128/mr.58.3.491-562.1994
  12. Parashar D, Cherian S. 2014. Antiviral perspectives for chikungunya virus. Biomed. Res. Int. 2014: 631642.
  13. Tuekprakhon A, Puiprom O, Sasaki T, Michiels J, Bartholomeeusen K, Nakayama EE, et al. 2018. Broadspectrum monoclonal antibodies against chikungunya virus structural proteins: Promising candidates for antibody-based rapid diagnostic test development. PLoS One 13: e0208851. https://doi.org/10.1371/journal.pone.0208851
  14. Snyder JE, Kulcsar KA, Schultz KL, Riley CP, Neary JT, Marr S, et al. 2013. Functional characterization of the alphavirus TF protein. J. Virol. 87: 8511-8523. https://doi.org/10.1128/JVI.00449-13
  15. Kielian M, Chanel-Vos C, Liao M. 2010. Alphavirus entry and membrane fusion. Viruses. 2: 796-825. https://doi.org/10.3390/v2040796
  16. Stetson DB, Medzhitov R. 2006. Type I interferons in host defense. Immunity 25: 373-381. https://doi.org/10.1016/j.immuni.2006.08.007
  17. Kang S, Myoung J. 2017. Host innate immunity against hepatitis E virus and viral evasion mechanisms. J. Microbiol. Biotechnol. 27: 1727-1735. https://doi.org/10.4014/jmb.1708.08045
  18. Kang S, Myoung J. 2017. Primary lymphocyte infection models for KSHV and its putative tumorigenesis mechanisms in B cell lymphomas. J. Microbiol. 55: 319-329. https://doi.org/10.1007/s12275-017-7075-2
  19. Honda K, Takaoka A, Taniguchi T. 2006. Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25: 349-360. https://doi.org/10.1016/j.immuni.2006.08.009
  20. Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124: 783-801. https://doi.org/10.1016/j.cell.2006.02.015
  21. Hu YW, Zhang J, Wu XM, Cao L, Nie P, Chang MX. 2018. TANK-binding kinase 1 (TBK1) isoforms negatively regulate Type I interferon induction by inhibiting TBK1-IRF3 interaction and IRF3 phosphorylation. Front. Immunol. 9: 84. https://doi.org/10.3389/fimmu.2018.00084
  22. Lu LL, Puri M, Horvath CM, Sen GC. 2008. Select paramyxoviral V proteins inhibit IRF3 activation by acting as alternative substrates for inhibitor of kappaB kinase epsilon (IKKe)/TBK1. J. Biol. Chem. 283: 14269-14276. https://doi.org/10.1074/jbc.M710089200
  23. Brisse M, Ly H. 2019. Comparative structure and function analysis of the RIG-I-Like rceptors: RIG-I and MDA5. Front. Immunol. 10: 1586. https://doi.org/10.3389/fimmu.2019.01586
  24. Kang S, Choi C, Choi I, Han KN, Rho SW, Choi J, et al. 2018. Hepatitis E virus methyltransferase inhibits type I interferon induction by targeting RIG-I. J. Microbiol. Biotechnol. 28: 1554-1562. https://doi.org/10.4014/jmb.1808.08058
  25. Kim E, Myoung J. 2018. Hepatitis E virus papain-like cysteine protease inhibits type I interferon induction by down-regulating melanoma differentiation-associated gene 5. J. Microbiol. Biotechnol. 28: 1908-1915. https://doi.org/10.4014/jmb.1809.09028
  26. Lee J, Bae S, Myoung J. 2019. Generation of full-length infectious cDNA clones of iddle east respiratory syndrome coronavirus. J. Microbiol. Biotechnol. 29: 999-1007. https://doi.org/10.4014/jmb.1905.05061
  27. Lee JY, Bae S, Myoung J. 2019. Middle East respiratory syndrome coronavirus-encoded ORF8b strongly antagonizes IFN-beta promoter activation: its implication for vaccine design. J. Microbiol. 57: 803-811. https://doi.org/10.1007/s12275-019-9272-7
  28. Lee JY, Bae S, Myoung J. 2019. Middle east respiratory syndrome coronavirus-encoded accessory proteins impair MDA5-and TBK1-mediated activation of NF-kappaB. J. Microbiol. Biotechnol. 29: 1316-1323. https://doi.org/10.4014/jmb.1908.08004
  29. van Duijl-Richter MK, Hoornweg TE, Rodenhuis-Zybert IA, Smit JM. 2015. Early events in Chikungunya vrus infectionfrom virus cell binding to membrane fusion. Viruses 7: 3647-3674. https://doi.org/10.3390/v7072792
  30. Myoung J, Min K. 2019. Dose-Dependent Inhibition of melanoma differentiation-associated gene 5-mediated activation of type I interferon responses by methyltransferase of hepatitis E virus. J. Microbiol. Biotechnol. 29: 1137-1143. https://doi.org/10.4014/jmb.1905.05040
  31. Jang JH, Shin HW, Lee JM, Lee HW, Kim EC, Park SH. 2015. An overview of pathogen recognition receptors for innate immunity in dental pulp. Mediators Inflamm. 2015: 794143.
  32. Chau TL, Gioia R, Gatot JS, Patrascu F, Carpentier I, Chapelle JP, et al. 2008. Are the IKKs and IKK-related kinases TBK1 and IKK-epsilon similarly activated? Trends Biochem. Sci. 33: 171-180. https://doi.org/10.1016/j.tibs.2008.01.002
  33. Andrejeva J, Childs KS, Young DF, Carlos TS, Stock N, Goodbourn S, et al. 2004. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5, and inhibit its activation of the IFN-beta promoter. Proc. Natl. Acad. Sci. USA 101: 17264-17269.
  34. Saira K, Zhou Y, Jones C. 2007. The infected cell protein 0 encoded by bovine herpesvirus 1 (bICP0) induces degradation of interferon response factor 3 and, consequently, inhibits beta interferon promoter activity. J. Virol. 81: 3077-3086. https://doi.org/10.1128/JVI.02064-06
  35. Fros JJ, Liu WJ, Prow NA, Geertsema C, Ligtenberg M, Vanlandingham DL, et al. 2010. Chikungunya virus nonstructural protein 2 inhibits type I/II interferon-stimulated JAK-STAT signaling. J. Virol. 84: 10877-10887. https://doi.org/10.1128/JVI.00949-10
  36. Akhrymuk I, Kulemzin SV, Frolova EI. 2012. Evasion of the innate immune response: the Old World alphavirus nsP2 protein induces rapid degradation of Rpb1, a catalytic subunit of RNA polymerase II. J. Virol. 86: 7180-7191. https://doi.org/10.1128/JVI.00541-12
  37. Frolov I. 2004. Persistent infection and suppression of host response by alphaviruses. Arch. Virol. Suppl. 139-147.
  38. Simmons JD, White LJ, Morrison TE, Montgomery SA, Whitmore AC, Johnston RE, et al. 2009. Venezuelan equine encephalitis virus disrupts STAT1 signaling by distinct mechanisms independent of host shutoff. J. Virol. 83: 10571-10581. https://doi.org/10.1128/JVI.01041-09
  39. Lei J, Hilgenfeld R. 2017. RNA-virus proteases counteracting host innate immunity. FEBS Lett. 591: 3190-3210. https://doi.org/10.1002/1873-3468.12827

Cited by

  1. Chikungunya Virus: An Emergent Arbovirus to the South American Continent and a Continuous Threat to the World vol.11, 2019, https://doi.org/10.3389/fmicb.2020.01297
  2. Overview on Chikungunya Virus Infection: From Epidemiology to State-of-the-Art Experimental Models vol.12, 2019, https://doi.org/10.3389/fmicb.2021.744164
  3. Mayaro Virus Infects Human Brain Cells and Induces a Potent Antiviral Response in Human Astrocytes vol.13, pp.3, 2019, https://doi.org/10.3390/v13030465
  4. Mayaro Virus Non-Structural Protein 2 Circumvents the Induction of Interferon in Part by Depleting Host Transcription Initiation Factor IIE Subunit 2 vol.10, pp.12, 2019, https://doi.org/10.3390/cells10123510