DOI QR코드

DOI QR Code

Synthesis, Characterization and Antimicrobial Activity of Garcinol Capped Silver Nanoparticles

  • Fernando, H.N. (Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura) ;
  • Kumarasinghe, K.G.U.R. (Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura) ;
  • Gunasekara, T.D.C.P. (Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura) ;
  • Wijekoon, H.P.S.K. (Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura) ;
  • Ekanayaka, E.M.A.K. (Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura) ;
  • Rajapaksha, S.P. (Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura) ;
  • Fernando, S.S.N. (Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura) ;
  • Jayaweera, P.M. (Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura)
  • Received : 2019.04.18
  • Accepted : 2019.07.31
  • Published : 2019.11.28

Abstract

Garcinol, a well-known medicinal phytochemical, was extracted and isolated from the dried fruit rinds of Garcinia quaesita Pierre. In this study, garcinol has successfully used to reduce silver ions to silver in order to synthesize garcinol-capped silver nanoparticles (G-AgNPs). The formation and the structure of G-AgNPs were confirmed by UV-visible spectroscopy, transmission electron microscopy and Fourier transform infrared spectroscopy. The antimicrobial activity of garcinol and G-AgNPs were investigated by well diffusion assays, broth micro-dilution assays and time-kill kinetics studies against five microbial species, including Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), Candida albicans (ATCC 10231) and clinically isolated methicillin-resistant Staphylococcus aureus (MRSA). The formation of G-AgNPs is a promising novel approach to enhancing the biological activeness of silver nanoparticles, and to increase the water solubility of garcinol which creates a broad range of therapeutic applications.

Keywords

References

  1. Kim JS, Kuk E, Yu KN, Kim JH, Park SJ, Lee HJ, et al. 2007. Antimicrobial effects of silver nanoparticles. Nanomedicine 3: 95-101. https://doi.org/10.1016/j.nano.2006.12.001
  2. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S. 2008. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater. 4: 707-716. https://doi.org/10.1016/j.actbio.2007.11.006
  3. Sharma VK, Yngard RA, Lin Y. 2009. Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145: 83-96. https://doi.org/10.1016/j.cis.2008.09.002
  4. El Nour KMA, Eftaiha Aa, Al Warthan A, Ammar RA. 2010. Synthesis and applications of silver nanoparticles. Arabian J. Chem. 3: 135-140. https://doi.org/10.1016/j.arabjc.2010.04.008
  5. Dos Santos CA, Seckler MM, Ingle AP, Gupta I, Galdiero S, Galdiero, et al. 2014. Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J. Pharm. Sci. 103: 1931-1944. https://doi.org/10.1002/jps.24001
  6. Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MM. 2014. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int. J. Nanomedicine 9: 2399-2407.
  7. Aminov RI. 2009. The role of antibiotics and antibiotic resistance in nature. Environ. Microbiol. 11: 2970-2988. https://doi.org/10.1111/j.1462-2920.2009.01972.x
  8. Martinez JL. 2009. The role of natural environments in the evolution of resistance traits in pathogenic bacteria. Proc. Biol. Sci. 276: 2521-2530.
  9. Ahmad I, Beg AZ. 2001. Antimicrobial and phytochemical studies on 45 Indian medicinal plants against multi-drug resistant human pathogens. J. Ethnopharmacol. 74: 113-123. https://doi.org/10.1016/S0378-8741(00)00335-4
  10. Sambanthamoorthy K, Feng X, Patel R, Patel S, Paranavitana C. 2014. Antimicrobial and antibiofilm potential of biosurfactants isolated from lactobacilli against multi-drug-resistant pathogens. BMC Microbiol. 14: 197-205. https://doi.org/10.1186/1471-2180-14-197
  11. Hiramatsu K, Katayama Y, Matsuo M, Sasaki T, Morimoto Y, Sekiguchi A, et al. 2014. Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J. Infect. Chemother. 20: 593-601. https://doi.org/10.1016/j.jiac.2014.08.001
  12. Karaiskos I, Giamarellou H. 2014. Multidrug-resistant and extensively drug-resistant Gram-negative pathogens: current and emerging therapeutic approaches. Expert Opin. Pharmacother. 15: 1351-1370. https://doi.org/10.1517/14656566.2014.914172
  13. Powers JH. 2003. Development of drugs for antimicrobialresistant pathogens. Curr. Opin. Infect. Dis. 16: 547-551. https://doi.org/10.1097/00001432-200312000-00006
  14. Burke JP. 2003. Infection control-a problem for patient safety. N. Engl. J. Med. 348: 651-656. https://doi.org/10.1056/NEJMhpr020557
  15. Angulo FJ, Collignon P, Powers JH, Chiller TM, Aidara-Kane A, Aarestrup FM. 2009. World Health Organization ranking of antimicrobials according to their importance in human medicine: a critical step for developing risk management strategies for the use of antimicrobials in food production animals. Clin. Infect. Dis. 49: 132-141. https://doi.org/10.1086/599374
  16. Zhu X, Radovic-Moreno AF, Wu J, Langer R, Shi J. 2014. Nanomedicine in the management of microbial infection-overview and perspectives. Nano Today 9: 478-498. https://doi.org/10.1016/j.nantod.2014.06.003
  17. Wang L, Hu C, Shao L. 2017. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomedicine 12: 1227-1249. https://doi.org/10.2147/IJN.S121956
  18. Yan X, He B, Liu L, Qu G, Shi J, Hu L, et al. 2018. Antibacterial mechanism of silver nanoparticles in Pseudomonas aeruginosa: proteomics approach. Metallomics 10: 557-564. https://doi.org/10.1039/C7MT00328E
  19. Khan SU, Saleh TA, Wahab A, Khan MHU, Khan D, Ullah Khan W , et al. 2018. Nanosilver: new ageless and versatile biomedical therapeutic scaffold. Int. J. Nanomedicine 13: 733-762. https://doi.org/10.2147/IJN.S153167
  20. Panáček A, Kolář M, Večeřová R, Prucek R, Soukupova J, Krystof V, et al. 2009. Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30: 6333-6340. https://doi.org/10.1016/j.biomaterials.2009.07.065
  21. Kim KJ, Sung WS, Suh BK, Moon SK, Choi JS, Kim JG, et al. 2009. Antifungal activity and mode of action of silver nanoparticles on Candida albicans. Biometals 22: 235-242. https://doi.org/10.1007/s10534-008-9159-2
  22. Prabhu S, Poulose EK. 2012. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2: 32-42. https://doi.org/10.1186/2228-5326-2-32
  23. Lara HH, Ayala-Núñez NV, Turrent LdCI, Padilla CR. 2010. Bactericidal effect of silver nanoparticles against multidrugresistant bacteria. World J. Microbiol. Biotechnol. 26: 615-621. https://doi.org/10.1007/s11274-009-0211-3
  24. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. 2010. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6: 103-109. https://doi.org/10.1016/j.nano.2009.04.006
  25. Duran N, Duran M, de Jesus MB, Seabra AB, Favaro WJ, Nakazato G. 2016. Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12: 789-799. https://doi.org/10.1016/j.nano.2015.11.016
  26. Raffi M, Hussain F, Bhatti T, Akhter J, Hameed A, Hasan M. 2008. Antibacterial characterization of silver nanoparticles against E. coli ATCC-15224. J. Mater. Sci. Technol. 24: 192-196. https://doi.org/10.3321/j.issn:1005-0302.2008.02.011
  27. Klueh U, Wagner V, Kelly S, Johnson A, Bryers J. 2000. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. J. Biomed. Mater. Res. 53: 621-631. https://doi.org/10.1002/1097-4636(2000)53:6<621::AID-JBM2>3.0.CO;2-Q
  28. Rai M, Deshmukh S, Ingle A, Gade A. 2012. Silver nanoparticles: the powerful nanoweapon against multidrugresistant bacteria. J. Appl. Microbiol. 112: 841-852. https://doi.org/10.1111/j.1365-2672.2012.05253.x
  29. Rim K-T, Song S-W, Kim H-Y. 2013. Oxidative DNA damage from nanoparticle exposure and its application to workers' health: a literature review. Saf. Health Work 4: 177-186. https://doi.org/10.1016/j.shaw.2013.07.006
  30. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK. 2011. Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J. Nanobiotechnology 9: 30-38. https://doi.org/10.1186/1477-3155-9-30
  31. Park Y, Hong Y, Weyers A, Kim Y, Linhardt R. 2011. Polysaccharides and phytochemicals: a natural reservoir for the green synthesis of gold and silver nanoparticles. IET Nanobiotechnol. 5: 69-78. https://doi.org/10.1049/iet-nbt.2010.0033
  32. Lu R, Yang D, Cui D, Wang Z, Guo L. 2012. Egg whitemediated green synthesis of silver nanoparticles with excellent biocompatibility and enhanced radiation effects on cancer cells. Int. J. Nanomedicine 7: 2101-2107.
  33. Amooaghaie R, Saeri MR, Azizi M. 2015. Synthesis, characterization and biocompatibility of silver nanoparticles synthesized from Nigella sativa leaf extract in comparison with chemical silver nanoparticles. Ecotoxicol. Environ. Saf. 120: 400-408. https://doi.org/10.1016/j.ecoenv.2015.06.025
  34. Sathishkumar G, Gobinath C, Karpagam K, Hemamalini V, Premkumar K, Sivaramakrishnan S. 2012. Phyto-synthesis of silver nanoscale particles using Morinda citrifolia L. and its inhibitory activity against human pathogens. Colloids Surf. B Biointerfaces 95: 235-240. https://doi.org/10.1016/j.colsurfb.2012.03.001
  35. Blunk T, Hochstrasser DF, Sanchez JC, Müller BW, Muller RH. 1993. Colloidal carriers for intravenous drug targeting: plasma protein adsorption patterns on surface-modified latex particles evaluated by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 14: 1382-1387. https://doi.org/10.1002/elps.11501401214
  36. Gondikas AP, Morris A, Reinsch BC, Marinakos SM, Lowry GV, Hsu-Kim H. 2012. Cysteine-induced modifications of zero-valent silver nanomaterials: implications for particle surface chemistry, aggregation, dissolution, and silver speciation. Environ. Sci. Technol. 46: 7037-7045. https://doi.org/10.1021/es3001757
  37. Alexander JW. 2009. History of the medical use of silver. Surg. Infect. (Larchmt) 10: 289-292. https://doi.org/10.1089/sur.2008.9941
  38. Li F, Shanmugam MK, Chen L, Chatterjee S, Basha J, Kumar AP, et al. 2013. Garcinol, a polyisoprenylated benzophenone modulates multiple pro-inflammatory signaling cascades leading to suppression of growth and survival of head and neck carcinoma. Cancer Prev. Res. 6: 843-854. https://doi.org/10.1158/1940-6207.CAPR-13-0070
  39. Naldoni F, Claudino A, Cruz Jr J, Chavasco J, e Silva PF, Veloso MP, et al. 2009. Antimicrobial activity of benzophenones and extracts from the fruits of Garcinia brasiliensis. J. Med. Food 12: 403-407. https://doi.org/10.1089/jmf.2007.0622
  40. Liao C-H, Ho C-T, Lin J-K. 2005. Effects of garcinol on free radical generation and NO production in embryonic rat cortical neurons and astrocytes. Biochem. Biophys. Res. Commun. 329: 1306-1314. https://doi.org/10.1016/j.bbrc.2005.02.110
  41. Liu C, Ho PC-L, Wong FC, Sethi G, Wang LZ, Goh BC. 2015. Garcinol: Current status of its anti-oxidative, antiinflammatory and anti-cancer effects. Cancer Lett. 362:8-14. https://doi.org/10.1016/j.canlet.2015.03.019
  42. Saadat N, Gupta SV. 2012. Potential role of garcinol as an anticancer agent. J. Oncol. 2012: 1-8. https://doi.org/10.1155/2012/647206
  43. Sang S, Liao C-H, Pan M-H, Rosen RT, Lin-Shiau S-Y, et al. 2002. Chemical studies on antioxidant mechanism of garcinol: analysis of radical reaction products of garcinol with peroxyl radicals and their antitumor activities. Tetrahedron 58: 10095-10102. https://doi.org/10.1016/S0040-4020(02)01411-4
  44. Tang W, Pan M-H, Sang S, Li S, Ho C-T. 2013. Garcinol from Garcinia indica: chemistry and health beneficial effects. In Tropical and Subtropical Fruits: Flavors, Color, and Health Benefits. pp. 133-145. 1129th Vol. ACS Publications American Chemical Society, Washington DC, USA.
  45. Socolsky C, Plietker B. 2015. Total synthesis and absolute configuration assignment of MRSA active garcinol and isogarcinol. Chemistry 21: 3053-3061. https://doi.org/10.1002/chem.201406077
  46. Kaur R, Chattopadhyay SK, Tandon S, Sharma S. 2012. Large scale extraction of the fruits of Garcinia indica for the isolation of new and known polyisoprenylated benzophenone derivatives. Ind. Crops Prod. 37: 420-426. https://doi.org/10.1016/j.indcrop.2011.12.031
  47. Gaonkar RH, Ganguly S, Dewanjee S, Sinha S, Gupta A, et al. 2017. Garcinol loaded vitamin E TPGS emulsified PLGA nanoparticles: preparation, physicochemical characterization, in vitro and in vivo studies. Sci. Rep. 7: 530-544. https://doi.org/10.1038/s41598-017-00696-6
  48. Ossowski T, G oulart M O, A b reu FCd, A na S , Euzebio A , Miranda P, et al. 2008. Determination of the pKa values of some biologically active and inactive hydroxyquinones. J. Braz. Chem. Soc. 19: 175-183. https://doi.org/10.1590/S0103-50532008000100025
  49. Agnihotri S, Mukherji S, Mukherji S. 2014. Size-controlled silver nanoparticles synthesized over the range 5-100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 4: 3974-3983. https://doi.org/10.1039/C3RA44507K
  50. Mulfinger L, Solomon SD, Bahadory M, Jeyarajasingam AV, Rutkowsky SA, Boritz C. 2007. Synthesis and study of silver nanoparticles. J. Chem. Educ. 84: 322-325. https://doi.org/10.1021/ed084p322
  51. Peiris M, Fernando S, Jayaweera P, Arachchi N, Guansekara T. 2018. Comparison of antimicrobial properties of silver nanoparticles synthesized from selected bacteria. Indian J. Microbiol. 58: 301-311. https://doi.org/10.1007/s12088-018-0723-3
  52. Rashid MU, Bhuiyan MKH, Quayum ME. 2013. Synthesis of silver nano particles (Ag-NPs) and their uses for quantitative analysis of vitamin C tablets. Dhaka Univ. J. Pharm. Sci. 12: 29-33. https://doi.org/10.3329/dujps.v12i1.16297
  53. Balouiri M, Sadiki M, Ibnsouda SK. 2016. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 6: 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  54. Tutone M, Lauria A, Almerico AM. 2016. Theoretical determination of the pK a values of betalamic acid related to the free radical scavenger capacity: comparison between empirical and quantum chemical methods. Interdiscip. Sci. 8: 177-185. https://doi.org/10.1007/s12539-015-0101-3
  55. Babic S, Horvat AJ, Pavlovic DM, Kastelan-Macan M. 2007. Determination of pKa values of active pharmaceutical ingredients. Trends Analyt. Chem. 26: 1043-1061. https://doi.org/10.1016/j.trac.2007.09.004
  56. Kumar N, Singh AK. 2014. Plant profile, phytochemistry and pharmacology of Avartani (Helicteres isora Linn.): a review. Asian Pac. J. Trop. Biomed. 4: S22-S26. https://doi.org/10.12980/APJTB.4.2014C872
  57. Sivaraman SK, Elango I, Kumar S, Santhanam V. 2009. A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr. Sci. 97: 1055-1059.
  58. Yoosaf K, Ipe BI, Suresh CH, Thomas KG. 2007. In situ synthesis of metal nanoparticles and selective naked-eye detection of lead ions from aqueous media. J. Phys. Chem. C 111: 12839-12847. https://doi.org/10.1021/jp073923q
  59. Makarov V, Love A, Sinitsyna O, Makarova S, Yaminsky I, Taliansky ME, et al. 2014. "Green" nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae 6: 35-44. https://doi.org/10.32607/20758251-2014-6-1-35-44
  60. Senarathna U, Fernando S, Gunasekara T, Weerasekera M, Hewageegana H, Arachchi NDH, et al. 2017. Enhanced antibacterial activity of $TiO_2$ nanoparticle surface modified with Garcinia zeylanica extract. Chem. Cent. J. 11: 1-7. https://doi.org/10.1186/s13065-016-0232-6
  61. Padhye S, Ahmad A, Oswal N, Sarkar FH. 2009. Emerging role of Garcinol, the antioxidant chalcone from Garcinia indica Choisy and its synthetic analogs. J. Hematol. Oncol. 2: 38-51. https://doi.org/10.1186/1756-8722-2-38
  62. Cuesta-Rubio O, Piccinelli AL, Rastrelli L. 2005. Chemistry and biological activity of polyisoprenylated benzophenone derivatives. In Studies in natural products chemistry. pp. 671-720. 32nd volume. Elsevier, Amsterdam, The Netherlands.
  63. Tharachand C, Selvaraj CI, Abraham Z. 2015. Comparative evaluation of anthelmintic and antibacterial activities in leaves and fruits of Garcinia cambogia (Gaertn.) desr. and Garcinia indica (Dupetit-Thouars) choisy. Braz. Arch. Biol. Technol. 58: 379-386. https://doi.org/10.1590/S1516-8913201500062
  64. Varalakshmi K, Sangeetha C, Shabeena A, Sunitha S, Vapika J. 2010. Antimicrobial and cytotoxic effects of Garcinia indica fruit rind extract. Am. Eurasian J. Agric. Environ. Sci. 7: 652-656.
  65. Kim J-Y, Kim S-E, Kim J-E, Lee J-C, Yoon J-Y. 2005. The biocidal activity of nano-sized silver particles comparing with silver ion. J. Korean Soc. Environ. Eng. 27: 771-776.
  66. Kim S-H, Lee H-S, Ryu D-S, Choi S-J, Lee D-S. 2011. Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol. 39: 77-85.
  67. Chen S, Carroll DL. 2002. Synthesis and characterization of truncated triangular silver nanoplates. Nano Lett. 2: 1003-1007. https://doi.org/10.1021/nl025674h

Cited by

  1. Antifungal Activity of Silver Salts of Keggin-Type Heteropolyacids Against Sporothrix spp. vol.30, pp.4, 2019, https://doi.org/10.4014/jmb.1907.07064
  2. Garcinol Exhibits Anti-Neoplastic Effects by Targeting Diverse Oncogenic Factors in Tumor Cells vol.8, pp.5, 2019, https://doi.org/10.3390/biomedicines8050103
  3. One-Pot Reducing Agent-Free Synthesis of Silver Nanoparticles/Nitrocellulose Composite Surface Coating with Antimicrobial and Antibiofilm Activities vol.2021, 2021, https://doi.org/10.1155/2021/6666642