DOI QR코드

DOI QR Code

Monoterpenoid Loliolide Regulates Hair Follicle Inductivity of Human Dermal Papilla Cells by Activating the AKT/β-Catenin Signaling Pathway

  • Lee, Yu Rim (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University) ;
  • Bae, Seunghee (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University) ;
  • Kim, Ji Yea (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University) ;
  • Lee, Junwoo (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University) ;
  • Cho, Dae-Hyun (Sustainable Bioresource Research Center, KRIBB) ;
  • Kim, Hee-Sik (Sustainable Bioresource Research Center, KRIBB) ;
  • An, In-Sook (GeneCellPharm Corporation) ;
  • An, Sungkwan (Research Institute for Molecular-Targeted Drugs, Department of Cosmetics Engineering, Konkuk University)
  • 투고 : 2019.08.08
  • 심사 : 2019.10.04
  • 발행 : 2019.11.28

초록

Loliolide is one of the most ubiquitous monoterpenoid compounds found in algae, and its potential therapeutic effect on various dermatological conditions via agent-induced biological functions, including anti-oxidative and anti-apoptotic properties, was demonstrated. Here, we investigated the effects of loliolide on hair growth in dermal papilla (DP) cells, the main components regulating hair growth and loss conditions. For this purpose, we used a three-dimensional (3D) DP spheroid model that mimics the in vivo hair follicle system. Biochemical assays showed that low doses of loliolide increased the viability and size of 3D DP spheroids in a dose-dependent manner. This result correlated with increases in expression levels of hair growth-related autocrine factors including VEGF, IGF-1, and KGF. Immunoblotting and luciferase-reporter assays further revealed that loliolide induced AKT phosphorylation, and this effect led to stabilization of β-catenin, which plays a crucial role in the hair-inductive properties of DP cells. Further experiments showed that loliolide increased the expression levels of the DP signature genes, ALP, BMP2, VCAN, and HEY1. Furthermore, conditioned media from loliolide-treated DP spheroids significantly enhanced proliferation and the expression of hair growth regulatory genes in keratinocytes. These results suggested that loliolide could function in the hair growth inductivity of DP cells via the AKT/β-catenin signaling pathway.

키워드

참고문헌

  1. Wang HD, Chen CC, Huynh P, Chang JS. 2015. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184: 355-362. https://doi.org/10.1016/j.biortech.2014.12.001
  2. Yang X, Kang MC, Lee KW, Kang SM, Lee WW, Jeon YJ. 2011. Antioxidant activity and cell protective effect of loliolide isolated from Sargassum ringgoldianum subsp. coreanum. Algae 26: 201-208. https://doi.org/10.4490/algae.2011.26.2.201
  3. Percot A, Yalcin A, Aysel V, Erdugan H, Dural B, Guven KC. 2009. Loliolide in marine algae. Nat. Prod. Res. 23: 460-465. https://doi.org/10.1080/14786410802076069
  4. Grabarczyk M, Wińska K, Mączka W, Potaniec B, Aniol M. 2015. Loliolide - the most ubiquitous lactone. Folia Biologica et Oecologica 11: 1-8. https://doi.org/10.1515/fobio-2015-0001
  5. Chung CY, Liu CH, Burnouf T, Wang GH, Chang SP, Jassey A, et al. 2016. Activity-based and fraction-guided analysis of Phyllanthus urinaria identifies loliolide as a potent inhibitor of hepatitis C virus entry. Antiviral Res. 130: 58-68. https://doi.org/10.1016/j.antiviral.2016.03.012
  6. Park SH, Choi E, Kim S, Kim DS, Kim JH, Chang S, et al. 2018. Oxidative stress-protective and anti-melanogenic effects of loliolide and ethanol extract from fresh water green algae, Prasiola japonica. Int. J. Mol. Sci. 19. pii: E2825.
  7. Yang HH, Hwangbo K, Zheng MS, Cho JH, Son JK, Kim HY, et al. 2015. Inhibitory effects of (-)-loliolide on cellular senescence in human dermal fibroblasts. Arch. Pharm. Res. 38: 876-884. https://doi.org/10.1007/s12272-014-0435-0
  8. Schneider MR, Schmidt-Ullrich R, Paus R. 2009. The hair follicle as a dynamic miniorgan. Curr. Biol. 19: R132-142. https://doi.org/10.1016/j.cub.2008.12.005
  9. Ohyama M. 2019. Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Inflamm. Regen. 39: 4. doi: 10.1186/s41232-019-0093-1.
  10. Botchkarev VA, Kishimoto J. 2003. Molecular control of epithelial-mesenchymal interactions during hair follicle cycling. J. Investig. Dermatol. Symp. Proc. 8: 46-55.
  11. Sennett R, Rendl M. 2012. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin. Cell Dev. Biol. 23: 917-927. https://doi.org/10.1016/j.semcdb.2012.08.011
  12. Chiang C, Swan RZ, Grachtchouk M, Bolinger M, Litingtung Y, Robertson EK, et al. 1999. Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol. 205: 1-9. https://doi.org/10.1006/dbio.1998.9103
  13. Yang CC, Cotsarelis G. 2010. Review of hair follicle dermal cells. J. Dermatol. Sci. 57: 2-11. https://doi.org/10.1016/j.jdermsci.2009.11.005
  14. Kishimoto J, Burgeson RE, Morgan BA. 2000. Wnt signaling maintains the hair-inducing activity of the dermal papilla. Genes Dev. 14: 1181-1185.
  15. Morgan BA. 2014. The dermal papilla: an instructive niche for epithelial stem and progenitor cells in development and regeneration of the hair follicle. Cold Spring Harb Perspect. Med. 4(7): a015180. https://doi.org/10.1101/cshperspect.a015180
  16. Messenger AG, Slater DN, Bleehen SS. 1986. Alopecia areata: alterations in the hair growth cycle and correlation with the follicular pathology. Br. J. Dermatol. 114: 337-347. https://doi.org/10.1111/j.1365-2133.1986.tb02825.x
  17. Whiting DA. 2001. Possible mechanisms of miniaturization during androgenetic alopecia or pattern hair loss. J. Am. Acad. Dermatol. 45: S81-86. https://doi.org/10.1067/mjd.2001.117428
  18. Madaan A, Verma R, Singh AT, Jaggi M. 2018. Review of hair follicle dermal papilla cells as in vitro screening model for hair growth. Int. J. Cosmet. Sci. 40: 429-450. https://doi.org/10.1111/ics.12489
  19. Choi BY. 2018. Hair-growth potential of ginseng and its major metabolites: A Review on its molecular mechanisms. Int. J. Mol. Sci. 19(9). pii: E2703.
  20. Han JH, Kwon OS, Chung JH, Cho KH, Eun HC, Kim KH. 2004. Effect of minoxidil on proliferation and apoptosis in dermal papilla cells of human hair follicle. J. Dermatol. Sci. 34: 91-98. https://doi.org/10.1016/j.jdermsci.2004.01.002
  21. Madani S, Shapiro J. 2000. Alopecia areata update. J. Am. Acad. Dermatol. 42: 549-570. https://doi.org/10.1067/mjd.2000.103909
  22. Higgins CA, Chen JC, Cerise JE, Jahoda CA, Christiano AM. 2013. Microenvironmental reprogramming by three-dimensional culture enables dermal papilla cells to induce de novo human hair-follicle growth. Proc. Natl. Acad. Sci. USA 110: 19679-19688. https://doi.org/10.1073/pnas.1309970110
  23. Shimizu R, Okabe K, Kubota Y, Nakamura-Ishizu A, Nakajima H, Kishi K. 2011. Sphere formation restores and confers hair-inducing capacity in cultured mesenchymal cells. Exp. Dermatol. 20: 679-681. https://doi.org/10.1111/j.1600-0625.2011.01281.x
  24. Choi YM, An S, Lee J, Lee JH, Lee JN, Kim YS, et al. 2017. Titrated extract of Centella asiatica increases hair inductive property through inhibition of STAT signaling pathway in three-dimensional spheroid cultured human dermal papilla cells. Biosci. Biotechnol. Biochem. 81: 2323-2329. https://doi.org/10.1080/09168451.2017.1385383
  25. Lachgar S, Moukadiri H, Jonca F, Charveron M, Bouhaddioui N, Gall Y, et al. 1996. Vascular endothelial growth factor is an autocrine growth factor for hair dermal papilla cells. J. Invest. Dermatol. 106: 17-23. https://doi.org/10.1111/1523-1747.ep12326964
  26. Hwang KA, Hwang YL, Lee MH, Kim NR, Roh SS, Lee Y, et al. 2012. Adenosine stimulates growth of dermal papilla and lengthens the anagen phase by increasing the cysteine level via fibroblast growth factors 2 and 7 in an organ culture of mouse vibrissae hair follicles. Int. J. Mol. Med. 29: 195-201.
  27. Manning BD, Cantley LC. 2007. AKT/PKB signaling: navigating downstream. Cell 129: 1261-1274. https://doi.org/10.1016/j.cell.2007.06.009
  28. Park SH, Kim DS, Kim S, Lorz LR, Choi E, Lim HY, et al. 2019. Loliolide presents antiapoptosis and antiscratching effects in human keratinocytes. Int. J. Mol. Sci. 20(3). pii: E651. https://doi.org/10.3390/ijms20030651
  29. Andl T, Reddy ST, Gaddapara T, Millar SE. 2002. WNT signals are required for the initiation of hair follicle development. Dev. Cell. 2: 643-653. https://doi.org/10.1016/S1534-5807(02)00167-3
  30. Zhang H, Nan W, Wang S, Zhang T, Si H, Yang F, et al. 2016. Epidermal growth factor promotes proliferation and migration of follicular outer root sheath cells via Wnt/betacatenin signaling. Cell Physiol. Biochem. 39: 360-370. https://doi.org/10.1159/000445630
  31. Driskell RR, Clavel C, Rendl M, Watt FM. 2011. Hair follicle dermal papilla cells at a glance. J. Cell Sci. 124: 1179-1182. https://doi.org/10.1242/jcs.082446
  32. Shin H, Cho AR, Kim DY, Munkhbayer S, Choi SJ, Jang S, et al. 2016. Enhancement of human hair growth using Ecklonia cava polyphenols. Ann. Dermatol. 28: 15-21. https://doi.org/10.5021/ad.2016.28.1.15
  33. Kang JI, Kim SC, Han SC, Hong HJ, Jeon YJ, Kim B, et al. 2012. Hair-loss preventing effect of Grateloupia elliptica. Biomol. Ther. (Seoul) 20: 118-124. https://doi.org/10.4062/biomolther.2012.20.1.118
  34. Park KS, Park DH. 2016. Comparison of Saccharina japonica-Undaria pinnatifida mixture and minoxidil on hair growth promoting effect in mice. Arch. Plast. Surg. 43: 498-505. https://doi.org/10.5999/aps.2016.43.6.498
  35. Yoon HS, Kang JI, Kim SM, Ko A, Koh YS, Hyun JW, et al. 2019. Norgalanthamine stimulates proliferation of dermal papilla cells via anagen-activating signaling pathways. Biol. Pharm. Bull. 42: 139-143. https://doi.org/10.1248/bpb.b18-00226
  36. Porter RM. 2003. Mouse models for human hair loss disorders. J. Anat. 202: 125-131. https://doi.org/10.1046/j.1469-7580.2003.00140.x
  37. Hggins CA, Richardson GD, Ferdinando D, Westgate GE, Jahoda CA. 2010. Modelling the hair follicle dermal papilla using spheroid cell cultures. Exp. Dermatol. 19: 546-548. https://doi.org/10.1111/j.1600-0625.2009.01007.x
  38. Mali NM, Kim YH, Park JM, Kim D, Heo W, Dao BL, et al. 1993. Characterization of human dermal papilla cells in alginate spheres. Appl. Sci. 8(10).
  39. Herman A, Herman AP. 2016. Mechanism of action of herbs and their active constituents used in hair loss treatment. Fitoterapia 114: 18-25. https://doi.org/10.1016/j.fitote.2016.08.008
  40. Cheon HI, Bae S, Ahn KJ. 2018. Flavonoid silibinin increases hair-inductive property via AKT and Wnt/${\beta}$-catenin signaling activation in 3-dimensional-spheroid cultured human dermal papilla cells. J. Microbiol. Biotechnol. 29: 321-329. https://doi.org/10.4014/jmb.1810.10050
  41. Botchkarev VA, Sharov AA. 2004. BMP signaling in the control of skin development and hair follicle growth. Differentiation 72: 512-526. https://doi.org/10.1111/j.1432-0436.2004.07209005.x
  42. Lee J, Tumbar T. 2012. Hairy tale of signaling in hair follicle development and cycling. Semin. Cell Dev. Biol. 23: 906-916. https://doi.org/10.1016/j.semcdb.2012.08.003
  43. Lin B, Miao Y, Wang J, Fan Z, Du L, Su Y, et al. 2016. Surface tension guided hanging-drop: producing controllable 3D spheroid of high-passaged human dermal papilla cells and forming inductive microtissues for hair-follicle regeneration. ACS Appl. Mater. Interfaces 8: 5906-5916. https://doi.org/10.1021/acsami.6b00202
  44. Luanpitpong S, Nimmannit U, Chanvorachote P, Leonard SS, Pongrakhananon V, Wang L, et al. 2011. Hydroxyl radical mediates cisplatin-induced apoptosis in human hair follicle dermal papilla cells and keratinocytes through Bcl-2-dependent mechanism. Apoptosis 16: 769-782. https://doi.org/10.1007/s10495-011-0609-x

피인용 문헌

  1. Broussonetia papyrifera Promotes Hair Growth Through the Regulation of β-Catenin and STAT6 Target Proteins: A Phototrichogram Analysis of Clinical Samples vol.7, pp.2, 2019, https://doi.org/10.3390/cosmetics7020040
  2. Micro-Current Stimulation Has Potential Effects of Hair Growth-Promotion on Human Hair Follicle-Derived Papilla Cells and Animal Model vol.22, pp.9, 2021, https://doi.org/10.3390/ijms22094361
  3. Loliolide from Artemisia princeps Suppresses Adipogenesis in Human Bone Marrow-Derived Mesenchymal Stromal Cells via Activation of AMPK and Wnt/β-catenin Pathways vol.11, pp.12, 2019, https://doi.org/10.3390/app11125435
  4. Ginsenoside Rg4 Enhances the Inductive Effects of Human Dermal Papilla Spheres on Hair Growth Via the AKT/GSK-3β/β-Catenin Signaling Pathway vol.31, pp.7, 2021, https://doi.org/10.4014/jmb.2101.01032
  5. (−)-Loliolide Isolated from Sargassum horneri Abate UVB-Induced Oxidative Damage in Human Dermal Fibroblasts and Subside ECM Degradation vol.19, pp.8, 2021, https://doi.org/10.3390/md19080435
  6. Functional hair follicle regeneration: an updated review vol.6, pp.1, 2021, https://doi.org/10.1038/s41392-020-00441-y
  7. A systematic summary of survival and death signalling during the life of hair follicle stem cells vol.12, pp.1, 2019, https://doi.org/10.1186/s13287-021-02527-y