참고문헌
- Mengel K. 1982. Factors of plant nutrient availability relevant to soil testing. Soil 64: 129-138.
- Mahajan S, Tuteja N. 2005. Cold, salinity and drought stresses: an overview. Arch. Biochem. Biophys. 444: 139-158. https://doi.org/10.1016/j.abb.2005.10.018
- Aduldecha C, Kaewpradit W, Vorasoot N, Puangbut D, Jogloy S, Patanothai A. 2016. Effects of water regimes on inulin content and inulin yield of Jerusalem artichoke genotypes with different levels of drought tolerance. Turk. J. Agric. For. 40: 335-343. https://doi.org/10.3906/tar-1506-39
- Vurukonda SS, Vardharajula S, Shrivastava M, SkZ A. 2016. Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol. Res. 184: 13-24. https://doi.org/10.1016/j.micres.2015.12.003
- Du H, Wu N, Fu J, Wang S, Li X, Xiao J, et al. 2012. A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. J. Exp. Bot. 63: 6467-6480. https://doi.org/10.1093/jxb/ers300
- Glick BR, Cheng Z, Czarny J, Duan J. 2007. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur. J. Plant Pathol. 119: 329-339. https://doi.org/10.1007/s10658-007-9162-4
- Wilkinson JF. 1958. The extracellular polysaccharides of bacteria. Bacteriol. Rev. 22: 46-73. https://doi.org/10.1128/MMBR.22.1.46-73.1958
- Hepper CM. 1975. Extracellular polysaccharides of soil bacteria, pp. 93-111. In Walker N (ed.), Soil microbiology, a critical review, Wiley, New York.
- Khamwan S, Boonlue S, Riddech N, Jogloy S, Mongkolthanaruk W. 2018. Characterization of endophytic bacteria and their response to plant growth promotion in Helianthus tuberosus L. Biocatal. Agric. Biotechnol. 13: 153?159. https://doi.org/10.1016/j.bcab.2017.12.007
- Ali SZ, Sandhya V, Rao LV. 2014. Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann. Microbiol. 64: 493-502. https://doi.org/10.1007/s13213-013-0680-3
- Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
- Bates LS, Waldren RP, Teare ID. 197 3. Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207. https://doi.org/10.1007/BF00018060
- Doorenbos J, Pruitt WO. 1992. Crop water requirement: calculation of crop water requirement, pp. 1-65. In Brouwer C, Heibloem M (eds.), Irrigation water management training manual no. 3, FAO of The United Nation, Italy.
- Janket A, Jogloy S, Vorasoot N, Kesmala T, Holbrook C, Patanothai A. 2013. Genetic diversity of water use efficiency in Jerusalem artichoke (Helianthus tuberosus L.) germplasm. Aust. J. Crop Sci. 7: 1670-1681.
- Saengkanuk A, Nuchadomrong S, Jogloy S, Patanothai A, Srijaranai S. 2011. A simplified spectrophotometric method for the determination of inulin in Jerusalem artichoke (Helianthus tuberosus L.) tubers. Eur. Food Res. Technol. 233: 609. https://doi.org/10.1007/s00217-011-1552-3
- Namwongsa J, Boonlue S, Riddech N, Jogloy S, Mongkolthanaruk, W. 2018. The survival of endophytic bacteria isolated from Jerusalem artichoke in drought conditions. Int. J. Appl. Phys. Sci. 4: 59-68.
- Arakawa T, Timasheff SN. 1985. Mechanism of poly(ethylene glycol) interaction with proteins. Biochemistry 24: 6756-6762. https://doi.org/10.1021/bi00345a005
- Singh RP, Shelke GM, Kumar A, Jha PN. 2015. Biochemistry and genetics of ACC deaminase: a weapon to "stress ethylene" produced in plants. Front. Microbiol. 6: 937. https://doi.org/10.3389/fmicb.2015.00937
- Li Z, Chang S, Ye S, Chen M, Lin L, Li Y, et al. 2015. Differentiation of 1-aminocyclopropane-1-carboxylate (ACC) deaminase from its homologs is the key for identifying bacteria containing ACC deaminase. FEMS Microbiol. Ecol. 91: doi: 10.1093/femsec/fiv112
- Roberson EB, Firestone MK. 1992. Relationship between desiccation and exopolysaccharide production in soil Pseudomonas sp. Appl. Environ. Microbiol. 58: 1284-1291. https://doi.org/10.1128/aem.58.4.1284-1291.1992
- Bashan Y, Holguin G, de-Bashan LE. 2004. Azospirillumplant relationships: physiological, molecular, agricultural, and environmental advances. Can. J. Microbiol. 50: 521-577. https://doi.org/10.1139/w04-035
- Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, et al. 2007. Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf. B. Biointerfaces. 60: 7-11. https://doi.org/10.1016/j.colsurfb.2007.05.012
- Kogut M, Russell NJ. 1987. Life at the limits: considerations on how bacteria can grow at extremes of temperature and pressure, or with high concentrations of ions and solutes. Sci. Prog. 71: 381-399.
- Ruttanaprasert R, Jogloy S, Vorasoot N, Kesmala T, Kanwar RS, Holbrook CC, et al. 2015. Root responses of Jerusalem artichoke genotypes to different water regimes. Biomass Bioenergy 81: 369-377. https://doi.org/10.1016/j.biombioe.2015.07.027
- Olanrewaju OS, Glick BR, Babalola OO. 2017. Mechanisms of action of plant growth promoting bacteria. World J. Microbiol. Biotechnol. 33: 197. https://doi.org/10.1007/s11274-017-2364-9
- Bolouri-Moghaddam MR, Le RK, Rolland F, Van den Ende W. 2010. Sugar signaling and antioxidant network connections in plant cells. FEBS J. 277: 202-207.
- Bianco C, Imperlini E, Calogero R, Senatore B, Pucci P, Defez R. 2006. Indole-3-acetic acid regulates the central metabolic pathways in Escherichia coli. Microbiology 152: 2421-2431. https://doi.org/10.1099/mic.0.28765-0
- Vandoorne B, Mathieu AS, Van den Ende W, Vergauwen R, Perilleux C, Javaux M, et al. 2012. Water stress drastically reduces root growth and inulin yield in Cichorium intybus (var. sativum) independently of photosynthesis. J. Exp. Bot. 63: 4359-4373. https://doi.org/10.1093/jxb/ers095
- Monti A, Amaducci MT, Pritoni G, Venturi G. 2005. Growth, fructan yield, and quality of chicory (Cichorium intybus L.) as related to photosynthetic capacity, harvest time and water regime. J. Exp. Bot. 56: 1389-1395. https://doi.org/10.1093/jxb/eri140
- Van den Ende W, De Coninck B, Van Laere A. 2004. Plant fructan exohydrolases: a role in signaling and defense? Trends Plant. Sci. 9: 523-528. https://doi.org/10.1016/j.tplants.2004.09.008
- Khamwan S, Mongkolthanaruk W. 2016. Exploring of the inulin synthesis gene of endophytic bacteria by the new degenerated primers. pp. 24-27. 6th Annual International Conference on Advances in Biotechnology Proceedings.
피인용 문헌
- Options and opportunities for manipulation of drought traits using endophytes in crops vol.24, pp.4, 2019, https://doi.org/10.1007/s40502-019-00485-5
- Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land vol.724, 2019, https://doi.org/10.1016/j.scitotenv.2020.138259
- Auxin-producing fungal endophytes promote growth of sunchoke vol.16, 2019, https://doi.org/10.1016/j.rhisph.2020.100271
- PGPR Mediated Alterations in Root Traits: Way Toward Sustainable Crop Production vol.4, 2021, https://doi.org/10.3389/fsufs.2020.618230
- The Role of Plant-Associated Bacteria, Fungi, and Viruses in Drought Stress Mitigation vol.12, 2021, https://doi.org/10.3389/fmicb.2021.743512
- Bacterial Root Endophytes: Characterization of Their Competence and Plant Growth Promotion in Soybean (Glycine max (L.) Merr.) under Drought Stress vol.18, pp.3, 2019, https://doi.org/10.3390/ijerph18030931
- Cultivation Practices, Adaptability and Phytochemical Composition of Jerusalem Artichoke (Helianthus tuberosus L.): A Weed with Economic Value vol.11, pp.5, 2021, https://doi.org/10.3390/agronomy11050914