References
- Jakobs C, Jaeken J, Gibson K. 1993. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16: 704-715. https://doi.org/10.1007/BF00711902
- Adeghate E, Ponery A. 2002. GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell. 34: 1-6. https://doi.org/10.1054/tice.2002.0217
-
Wong CGT, Bottiglieri T, Snead OC. 2003. Gaba,
$\gamma$ -hydroxybutyric acid, and neurological disease. Ann. Neurol. 54: S3-S12. -
Seok J-H, Park K-B, Kim Y-H, Bae M-O, Lee M-K, Oh S-H. 2008. Production and characterization of kimchi with enhanced levels of
$\gamma$ -aminobutyric acid. Food Sci. Biotechnol. 17: 940-946. - Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
- Cho YR, Chang JY, Chang HC. 2007. Production of gammaaminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17: 104-109.
-
Wu Q, Shah NP. 2017. High
$\gamma$ -aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter. Crit. Rev. Food Sci. Nutr. 57: 3661-3672. https://doi.org/10.1080/10408398.2016.1147418 -
Wu Q, Shah NP. 2015. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-
$\gamma$ -aminobutyric acid (GABA)-producing lactic acid bacteria. J. Dairy Sci. 98: 790-797. https://doi.org/10.3168/jds.2014-8808 -
Shan Y, Man C, Han X, Li L, Guo Y, Deng Y, et al. 2015. Evaluation of improved
$\gamma$ -aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J. Dairy Sci. 98: 2138-2149. https://doi.org/10.3168/jds.2014-8698 - Small PL, Waterman SR. 1998. Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol. 6: 214-216. https://doi.org/10.1016/S0966-842X(98)01285-2
- Teixeira JS, Seeras A, Sanchez-Maldonado AF, Zhang C, Su MS-W, Ganzle MG. 2014. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiol. 42: 172-180. https://doi.org/10.1016/j.fm.2014.03.015
- Azuma R, Ogimoto K, Suto T. 1962. Anaerobic culture method with steel wool. Nihon saikingaku zasshi. Jpn. J. Bacteriol. 17: 802-806. https://doi.org/10.3412/jsb.17.802
- Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299-310. https://doi.org/10.1046/j.1365-2958.1998.00676.x
- Feehily C, Karatzas K. 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 114: 11-24. https://doi.org/10.1111/j.1365-2672.2012.05434.x
- Yoshihashi T, Warun V, Patcharee T, Vipa S. 2009. Method for quantification of gamma-aminobutyric acid. Japan patent application PCT/JP2009/057537.
- Cho S-Y, Han D-W, G-S L. 2018. GABA flat fish sikhae containing high GABA and method for preparing thereof. South Korea patent application KR20160077998.
-
Barrett E, Ross R, O'toole P, Fitzgerald G, Stanton C. 2012.
$\gamma$ -Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113: 411-417. https://doi.org/10.1111/j.1365-2672.2012.05344.x -
Ratanaburee A, Kantachote D, Charernjiratrakul W, Sukhoom A. 2013. Selection of
$\gamma$ -aminobutyric acid-producing lactic acid bacteria and their potential as probiotics for use as starter cultures in Thai fermented sausages (Nham). Int. J. Food Sci. Technol. 48: 1371-1382. https://doi.org/10.1111/ijfs.12098 - De Biase D, Pennacchietti E. 2012. Glutamate decarboxylasedependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol. Microbiol. 86: 770-786. https://doi.org/10.1111/mmi.12020
- Mazzoli R, Pessione E, Dufour M, Laroute V, Giuffrida MG, Giunta C, et al. 2010. Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis. Amino Acids 39: 727-737. https://doi.org/10.1007/s00726-010-0507-5
- Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183. https://doi.org/10.1080/10408410600880643
-
Zhuang K, Jiang Y, Feng X, Li L, Dang F, Zhang W, et al. 2018. Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437
$^T$ induced by L-MSG. PLoS One 13: e0199021. https://doi.org/10.1371/journal.pone.0199021
Cited by
- Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods vol.9, pp.1, 2021, https://doi.org/10.3390/pr9010022
- Potent γ-amino butyric acid producing psychobiotic Lactococcus lactis LP-68 from non-rhizospheric soil of Syzygium cumini (Black plum) vol.204, pp.1, 2019, https://doi.org/10.1007/s00203-021-02629-4