DOI QR코드

DOI QR Code

Bioconversion of Gamma-Aminobutyric Acid from Monosodium Glutamate by Lactobacillus brevis Bmb5

  • Jeong, Anna (Division of Animal Science, Chonnam National University) ;
  • Yong, Cheng Chung (Division of Animal Science, Chonnam National University) ;
  • Oh, Sejong (Division of Animal Science, Chonnam National University)
  • Received : 2019.07.01
  • Accepted : 2019.09.17
  • Published : 2019.11.28

Abstract

Gamma-aminobutyric acid (GABA) plays important roles in host physiology. However, the effects of GABA are greatly restricted due to its low bioavailability in the human body. Here, a high acid-tolerance GABA-producing strain, Lactobacillus brevis Bmb5, was isolated from kimchi. Bmb5 converted glutamate to GABA (7.23 ± 0.68 ㎍/μl) at a rate of 72.3%. The expression of gadB gene, encoding the enzyme involved in the decarboxylation of glutamate to GABA, was decreased upon incubation. Our findings indicate GABA production in Bmb5 is not directly correlated with gadB gene expression, providing new insight into the mechanisms underlying GABA production in Lactobacillus.

Keywords

References

  1. Jakobs C, Jaeken J, Gibson K. 1993. Inherited disorders of GABA metabolism. J. Inherit. Metab. Dis. 16: 704-715. https://doi.org/10.1007/BF00711902
  2. Adeghate E, Ponery A. 2002. GABA in the endocrine pancreas: cellular localization and function in normal and diabetic rats. Tissue Cell. 34: 1-6. https://doi.org/10.1054/tice.2002.0217
  3. Wong CGT, Bottiglieri T, Snead OC. 2003. Gaba, $\gamma$-hydroxybutyric acid, and neurological disease. Ann. Neurol. 54: S3-S12.
  4. Seok J-H, Park K-B, Kim Y-H, Bae M-O, Lee M-K, Oh S-H. 2008. Production and characterization of kimchi with enhanced levels of $\gamma$-aminobutyric acid. Food Sci. Biotechnol. 17: 940-946.
  5. Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  6. Cho YR, Chang JY, Chang HC. 2007. Production of gammaaminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells. J. Microbiol. Biotechnol. 17: 104-109.
  7. Wu Q, Shah NP. 2017. High $\gamma$-aminobutyric acid production from lactic acid bacteria: emphasis on Lactobacillus brevis as a functional dairy starter. Crit. Rev. Food Sci. Nutr. 57: 3661-3672. https://doi.org/10.1080/10408398.2016.1147418
  8. Wu Q, Shah NP. 2015. Gas release-based prescreening combined with reversed-phase HPLC quantitation for efficient selection of high-$\gamma$-aminobutyric acid (GABA)-producing lactic acid bacteria. J. Dairy Sci. 98: 790-797. https://doi.org/10.3168/jds.2014-8808
  9. Shan Y, Man C, Han X, Li L, Guo Y, Deng Y, et al. 2015. Evaluation of improved $\gamma$-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017. J. Dairy Sci. 98: 2138-2149. https://doi.org/10.3168/jds.2014-8698
  10. Small PL, Waterman SR. 1998. Acid stress, anaerobiosis and gadCB: lessons from Lactococcus lactis and Escherichia coli. Trends Microbiol. 6: 214-216. https://doi.org/10.1016/S0966-842X(98)01285-2
  11. Teixeira JS, Seeras A, Sanchez-Maldonado AF, Zhang C, Su MS-W, Ganzle MG. 2014. Glutamine, glutamate, and arginine-based acid resistance in Lactobacillus reuteri. Food Microbiol. 42: 172-180. https://doi.org/10.1016/j.fm.2014.03.015
  12. Azuma R, Ogimoto K, Suto T. 1962. Anaerobic culture method with steel wool. Nihon saikingaku zasshi. Jpn. J. Bacteriol. 17: 802-806. https://doi.org/10.3412/jsb.17.802
  13. Sanders JW, Leenhouts K, Burghoorn J, Brands JR, Venema G, Kok J. 1998. A chloride-inducible acid resistance mechanism in Lactococcus lactis and its regulation. Mol. Microbiol. 27: 299-310. https://doi.org/10.1046/j.1365-2958.1998.00676.x
  14. Feehily C, Karatzas K. 2013. Role of glutamate metabolism in bacterial responses towards acid and other stresses. J. Appl. Microbiol. 114: 11-24. https://doi.org/10.1111/j.1365-2672.2012.05434.x
  15. Yoshihashi T, Warun V, Patcharee T, Vipa S. 2009. Method for quantification of gamma-aminobutyric acid. Japan patent application PCT/JP2009/057537.
  16. Cho S-Y, Han D-W, G-S L. 2018. GABA flat fish sikhae containing high GABA and method for preparing thereof. South Korea patent application KR20160077998.
  17. Barrett E, Ross R, O'toole P, Fitzgerald G, Stanton C. 2012. $\gamma$-Aminobutyric acid production by culturable bacteria from the human intestine. J. Appl. Microbiol. 113: 411-417. https://doi.org/10.1111/j.1365-2672.2012.05344.x
  18. Ratanaburee A, Kantachote D, Charernjiratrakul W, Sukhoom A. 2013. Selection of $\gamma$-aminobutyric acid-producing lactic acid bacteria and their potential as probiotics for use as starter cultures in Thai fermented sausages (Nham). Int. J. Food Sci. Technol. 48: 1371-1382. https://doi.org/10.1111/ijfs.12098
  19. De Biase D, Pennacchietti E. 2012. Glutamate decarboxylasedependent acid resistance in orally acquired bacteria: function, distribution and biomedical implications of the gadBC operon. Mol. Microbiol. 86: 770-786. https://doi.org/10.1111/mmi.12020
  20. Mazzoli R, Pessione E, Dufour M, Laroute V, Giuffrida MG, Giunta C, et al. 2010. Glutamate-induced metabolic changes in Lactococcus lactis NCDO 2118 during GABA production: combined transcriptomic and proteomic analysis. Amino Acids 39: 727-737. https://doi.org/10.1007/s00726-010-0507-5
  21. Fernandez M, Zuniga M. 2006. Amino acid catabolic pathways of lactic acid bacteria. Crit. Rev. Microbiol. 32: 155-183. https://doi.org/10.1080/10408410600880643
  22. Zhuang K, Jiang Y, Feng X, Li L, Dang F, Zhang W, et al. 2018. Transcriptomic response to GABA-producing Lactobacillus plantarum CGMCC 1.2437$^T$ induced by L-MSG. PLoS One 13: e0199021. https://doi.org/10.1371/journal.pone.0199021

Cited by

  1. Microbial Production and Enzymatic Biosynthesis of γ-Aminobutyric Acid (GABA) Using Lactobacillus plantarum FNCC 260 Isolated from Indonesian Fermented Foods vol.9, pp.1, 2021, https://doi.org/10.3390/pr9010022
  2. Potent γ-amino butyric acid producing psychobiotic Lactococcus lactis LP-68 from non-rhizospheric soil of Syzygium cumini (Black plum) vol.204, pp.1, 2019, https://doi.org/10.1007/s00203-021-02629-4