Acknowledgement
Supported by : 서경대학교
본 연구는 2019학년도 서경대학교 교내연구비 지원에 의하여 이루어졌음.
References
- D. Lowe, "Distinctive image features from scale invariant keypoints," IJCV, 60(2): pp. 91-110, 2004. https://doi.org/10.1023/B:VISI.0000029664.99615.94
- P. Viola, and M. Joncs, "Rapid object detection using a boosted cascade of simple features," CVPR, pp. 511-518, 2004.
- G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray, "Visual categorization with bags of keypoints," Workshop on statistical learning in computer vision, ECCV, pp. 1-22, 2004.
- A. Krizhevsky, I. Sutskcver, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," Advances in neural information processing systems, pp. 1097-1105, 2012.
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.
- R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," Proceedings of the IEEE conference on computer vision and pattern recognition, pp.580-587, 2014.
- R. Girshick, "Fast R-CNN," Proceedings af the IEEE international conference on computer vision, pp.1440-1448, 2015.
- C. Farabet, C. Couprie, L. Najaman, and Y. LeCun, "Learning hierarchical features for scene labeling," IEEE transactions on pattern analysis and machine intelligence, pp. 1915-1929, 2012,
- L. C. Chen, G. Papandreou, L Kokkinos, K. Murphy, and A. L. Yuille, "Semantic image segmentation with deep convolutional nets and fully connected CRFs," arXiv preprint arXiv: 1411.7061, 2014.
- S. Ren, K He, R. Girshick, and J. Sun, "Faster R-CNN: Towards real-time object detection with region proposal networks," Advances in neural information processing systems, pp. 91-99, 2015.
- J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You Only Look Once: Unified, real-time object detection," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779-788, 2016.
- R. R. Selvaraju, M. Cogswcll, A. Das, R. Vedantam, D. Parikh, and D. Batra, "Grad-CAM: Visual explanations from deep networks via gradient-based localization," Proeceedings of the IEEE international conference on computer vision, pp. 618-626, 2017.
- L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, "Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs," IEEE transaction on the pattern analysis and machine intelligence, 40(4): pp. 834-848, 2017. https://doi.org/10.1109/TPAMI.2017.2699184
- B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, "Learning deep features for discriminative localization," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2921-2929, 2016.
- M. Lin, Q. Chen, and S. Van, "Network in network," arXiv preprint arXiv: 1312.4400, 2013.
- V. Nair, G. E. Hinton, "Rectified linear units restricted boltzmann machines," Proceedings improve of the 27th international conference on machine learning(ICML-10), pp. 807-814, 2010.
- J. Hosang, R. Benenson, and B, Schiele, "Learning non-maximum suppression," Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4507-4515, 2017.
- K. Simonyan, and A. Zisserman, "Very deep convolutional networks for image recognition," arXiv preprint arXiv: 1409,1556, 2014.
- W. Liu, O. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, and A. C. Berg, "SSD: Single shot multibox detector," European conference on computer vision, pp. 21-37, 2016.
- A. Krizhevsky, and G. Hinton, "Learning multiple layers of features from tiny images," Tech Report, 2009.