DOI QR코드

DOI QR Code

Development of Simulation Method to Design Rover's Camera System for Extreme Region Exploration

극한지 탐사 로버의 카메라 시스템 설계를 위한 시뮬레이션 기법 개발

  • Kim, Changjae (Department of Civil and Environmental Engineering, Myongji University) ;
  • Park, Jaemin (Innovation and Strategy Division, Korea Institute of Civil Engineering and Building Technology) ;
  • Choi, Kanghyuk (Department of Civil and Environmental Engineering, Myongji University) ;
  • Shin, Hyu-Soung (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology) ;
  • Hong, Sungchul (Department of Future Technology and Convergence Research, Korea Institute of Civil Engineering and Building Technology)
  • 김창재 (명지대학교 토목환경공학과) ;
  • 박재민 (한국건설기술연구원 혁신전략실) ;
  • 최강혁 (명지대학교 토목환경공학과) ;
  • 신휴성 (한국건설기술연구원 미래융합연구본부) ;
  • 홍성철 (한국건설기술연구원 미래융합연구본부)
  • Received : 2019.09.23
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

In extreme environment regions, unmanned rovers equipped with various sensors and devices are being developed for long-term exploration on behalf of humans. On the other hand, due to the harsh weather conditions and rough terrain, the rover camera has limited visible distance and field of view. Therefore, the rover cameras should be located for safe navigation and efficient terrain mapping. In this regard, to minimize the cost and time to manufacture the camera system on a rover, the simulation method using the rover design is presented to optimize the camera locations on the rover efficiently. In the simulation, a simulated terrain was taken from cameras with different locations and angles. The visible distance and overlapped extent of camera images, and terrain data accuracy calculated from the simulation were compared to determine the optimal locations of the rover's cameras. The simulated results will be used to manufacture a rover and camera system. In addition, self and system calibrations will be conducted to calculate the accurate position of the camera system on the rover.

극한환경 지역에서 무인 로버는 다수의 센서와 장비를 탑재하고 인간을 대신해 장기간 탐사 임무를 수행하기 위해 개발된다. 하지만 혹독한 기상과 거친 지형조건을 가진 극한환경 지역에서 로버 카메라 영상은 제한된 가시거리와 시야각을 가지므로, 카메라들은 안전한 원격 주행과 효율적 지형정보 구축을 위해 배치되어야 한다. 이에 본 연구에서는 로버 설계 도면을 기반으로 한 카메라 배치 시뮬레이션을 수행함으로써, 향후 로버 카메라 시스템 제작을 위한 시간과 비용을 최소화 하고자 하였다. 제안한 로버의 카메라 시스템은 총 8대의 카메라가 탑재되며, 기능적 요건에 따라 탐사 및 주행 카메라로 분류 된다. 카메라 배치 시뮬레이션에서는 카메라들의 위치와 경사 각도를 변경하여 가상의 지형을 촬영한다. 로버 카메라의 최적 배치는 가상 지형영상의 가시거리 및 중첩도, 지형 데이터의 정확도 등을 비교 및 분석하여 결정하였다. 카메라 배치 시뮬레이션 결과는 실제 로버 제작에 반영될 예정으로, 향후 극한환경지역을 모사한 모의지형을 구축하고 로버 성능을 종합적으로 평가하여 로버 카메라 시스템의 성능을 개선할 예정이다.

Keywords

References

  1. Y. Sim, S. Lee, "Development Trend of Remote Operational Robot System for Extreme (Risk) Task," Industrial Engineering Magazine, vol. 18, no. 1, pp. 40-42, 2011.
  2. J. Baek, "Recent Progress in Extreme Environment Robotics Technologies," Journal of the Korean Society for Precision Engineering, vol. 36, no. 4, pp. 322-323, 2019.
  3. E. Sim, "Current Development Trends in Lunar Explorers Around the World," Current Industrial and Technological Trends in Aerospace, vol. 14, no. 8, pp. 151-165, 2016.
  4. L. Ray, A. Adolph, A. Morlock, B. Walker, M. Albert, J. H. Lever, J. Dibb "Autonomous rover for polar science support and remote sensing," 2014 IEEE Geoscience and Remote Sensing Symposium, Beijing China, pp. 4101-4104. 2014. DOI: https://doi.org/10.1109/IGARSS.2014.6947388
  5. S. Cho, Y. Kang, T. Lee, "Trajectory Tracking Experiment of Autonomous Mobile Robot for Crevasse Detection on Arctic Environment," Conference of Korean Society for Precision Engineering, Jeju, South Korea, pp. 490-491, 2015.
  6. S. Kawatsuma, M. Fukushima, T. Okada, "Emergency response by robots to Fukushima-Daiichi accident: summary and lessons learned," Industrial Robot: An International Journal, vol. 39, no. 5, pp.428-435, 2012. DOI: https://doi.org/10.1108/01439911211249715
  7. S. Lee, Y. Choi, K. Jeong, "Domestic Recent Works on Robotic System for Safety of Nuclear Power Plants," Journal of the Korean Society for Precision Engineering, vol. 36, no. 4, pp. 323-329, 2019. DOI: https://doi.org/10.7736/KSPE.2019.36.4.323
  8. A. Colaprete, R. C. Elphic, D. Andrews, W. Bluethmann, J. Quinn, D. G. Chavers, "Resource Prospector: Evaluating the ISRU Potential of the Lunar Poles," Annual Meeting of Lunar Exploration Analysis Group (LEAG), Maryland, USA, 2016
  9. G. Ju, "Development Status of Domestic & Overseas Space Exploration & Associated Technology," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 44, no. 8, pp. 741-757, 2016. DOI: https://doi.org/10.5139/JKSAS.2016.44.8.741
  10. C. Chen, B. Bu, Y. He, J. Han, "Design, Implementation and Experimental Tests of a New Generation of Antarctic Rover," IEEE International Conference on Robotics and Biomimetics (ROBIO), Guangzhou, China, pp. 2144-2149, 2012. DOI: https://doi.org/10.1109/ROBIO.2012.6491286
  11. E. Kim, W. Lee, C. Hong, "A Study on Local Three-Dimensional Visualization Methodology for Effective Analysis of Construction Environments in Extreme Cold Region," Journal of Korea Spatial Information Society, Vol. 20, No. 6, pp. 129-137, 2012. DOI: https://doi.org/10.12672/ksis.2012.20.6.129
  12. S. Hong, H. Shin, "Trend Analysis of Lunar Exploration Missions for Lunar Base Construction," Journal of the Korea Academia- Industrial Cooperation Society, Vol. 19, No. 7, pp. 144-152, 2018. DOI: https://doi.org/10.5762/KAIS.2018.19.7.144
  13. K. Hwang, D. Kim, G. Park, S. Kim, S. Park, "Simulation Based Design of Intelligent Surveillance Robot for Mobility," Journal of The Korean Society of Mechanical Engineers, Vol. 32, No. 4, pp. 340-346, 2018. DOI: https://doi.org/10.3795/KSME-A.2008.32.4.340
  14. W. Jang, K. Min, J. Son, "A study on Effectiveness of Vision System Varying with Location of Camera," Proc. of the Korean Society for Precision Engineering, Daejun, South Korea, pp. 21-22, 2008
  15. W. Choi, C. Kim, Y. Kim, "A Study for Efficient Methods of System Calibration between Optical and Range Sensors by Using Simulation," Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, Vol. 33, No. 2, pp. 95-101, 2015. DOI: https://doi.org/10.7848/ksgpc.2015.33.2.95