DOI QR코드

DOI QR Code

Low Complexity Single Image Dehazing via Edge-Preserving Transmission Estimation and Pixel-Based JBDC

에지 보존 전달량 추정 및 픽셀 단위 JBDC를 통한 저 복잡도 단일 영상 안개 제거

  • Kim, Jongho (Department of Multimedia Engineering, Sunchon National University)
  • 김종호 (순천대학교 멀티미디어공학과)
  • Received : 2019.11.04
  • Accepted : 2019.12.06
  • Published : 2019.12.31

Abstract

This paper presents low-complexity single-image dehazing to enhance the visibility of outdoor images that are susceptible to degradation due to weather and environmental conditions, and applies it to various devices. The conventional methods involve refinement of coarse transmission with high computational complexity and extensive memory requirements. But the proposed transmission estimation method includes excellent edge-preserving performance from comparison of the pixel-based dark channel and the patch-based dark channel in the vicinity of edges, and transmission can be estimated with low complexity since no refinement is required. Moreover, it is possible to accurately estimate transmissions and adaptively remove haze according to the characteristics of the images via prediction of the atmospheric light for each pixel using joint bright and dark channel (JBDC). Comprehensive experiments on various hazy images show that the proposed method exhibits reduced computational complexity and excellent dehazing performance, compared to the existing methods; thus, it can be applied to various fields including real-time devices.

본 논문에서는 기상 및 환경조건에 영향을 받아 열화되기 쉬운 실외영상의 시인성을 개선하고 다양한 기기에 적용하기 위하여 저 복잡도의 단일 영상 안개 제거방법을 제안한다. 기존 방법에서는 거친 형태의 전달량을 추정한 후 연산량 및 메모리 요구량이 큰 정련 과정을 포함하는 반면, 제안하는 전달량 추정 방법은 에지 근처에서 픽셀 단위 dark channel과 패치 단위 dark channel을 비교함으로써 에지를 보존하는 특성이 우수하고 정련 과정이 필요하지 않아 저복잡도 전달량 추정이 가능하다. 또한, 픽셀 단위 JBDC(Joint Bright and Dark Channel)를 이용하여 각 픽셀마다 안개값을 예측함으로써 정밀한 전달량 추정과 영상의 특성에 따라 적응적인 안개 제거가 가능하다. 다양한 안개 영상에 대해 수행한 실험 결과는 제안하는 방법이 기존의 방법에 비해 적은 연산량으로 수행됨과 동시에 우수한 안개 제거 성능을 보여 실시간성이 요구되는 기기를 포함한 다양한 분야에 적용될 수 있음을 확인할 수 있다.

Keywords

References

  1. C. Yeh, L. Kang, M. Lee, and C. Lin, "Haze effect removal from image via haze density estimation in optical model," Optics Express, Vol. 21, No. 22, pp. 27127-27141, Nov. 2013. DOI: http://dx.doi.org/10.1364/OE.21.027127
  2. J. Tarel and N. Hautiere, "Fast visibility restoration from a single color or gray level images," Proceedings of IEEE Int. Conference on Computer Vision (ICCV ), IEEE, Kyoto, Japan, pp. 2201-2208, Sep. 2009. DOI: http://dx.doi.org/10.1109/ICCV.2009.5459251
  3. Y. Schechner, S. Narasimhan, and S. Nayer, "Instant dehazing of images using polarization," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR ), IEEE, Kauai, USA, pp. 325-332, Dec. 2001. DOI: http://dx.doi.org/10.1109/CVPR.2001.990493
  4. S. Shwartz, E. Namer, and Y. Schechner, "Blind haze separation," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR ), IEEE, New York, USA, pp. 1984-1991, Jun. 2006. DOI: http://dx.doi.org/10.1109/CVPR.2006.71
  5. S. Narasimhan and S. Nayer, "Contrast restoration of weather degraded images," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 25, No. 6, pp. 713-724, Jun. 2003. DOI: http://dx.doi.org/10.1109/TPAMI.2003.1201821
  6. S. Nayer and S. Narasimhan, "Vision in bad weather," Proceedings of IEEE Int. Conference on Computer Vision (ICCV ), IEEE, Kerkyra, Greece, pp. 820-827, Sep. 1999. DOI: http://dx.doi.org/10.1109/ICCV.1999.790306
  7. J. Kopf, B. Neubert, B. Chen, M. Cohen, D. Cohen-Or, O. Deussen, M. Uyttendaele, and D. Lischinski, "Deep photo: Model-based photograph enhancement and viewing," ACM Trans. Graphics, Vol. 27, No. 5, pp. 116:1-116:10, Dec. 2008. DOI: http://dx.doi.org/10.1145/1409060.1409069
  8. S. Lee, S. Yun, J. Nam, C. Won, and S. Jung, "A review on dark channel prior based image dehazing algorithms," The European Association for Signal Processing (EURASIP) Journal on Image and Video Processing, Vol. 2016, No. 4, pp. 1-23, Dec. 2016. DOI: http://dx.doi.org/10.1186/s13640-016-0104-y
  9. R. Tan, "Visibility in bad weather from a single image," Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, Anchorage, USA, pp. 1-8, Jun. 2008. DOI: http://dx.doi.org/10.1109/CVPR.2008.4587643
  10. R. Fattal, "Single image dehazing," ACM Trans. Graphics, Vol. 27, No. 3, pp. 1-9, Aug. 2008. DOI: http://dx.doi.org/10.1145/1360612.1360671
  11. K. He, J. Sun, and X. Tang, "Single image haze removal using dark channel prior," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 33, No. 12, pp. 2341-2353, Dec. 2011. DOI: http://dx.doi.org/10.1109/TPAMI.2010.168
  12. J. Kim, "Histogram modification based on additive term and gamma correction for image contrast enhancement," Journal of the Korea Institute of Electronic Communication Sciences, Vol. 13, No. 5, pp. 1117-1124, Oct. 2018. https://doi.org/10.13067/JKIECS.2018.13.5.1117
  13. J. Kim, "Single image haze removal algorithm using dual DCP and adaptive brightness correction," Journal of the Korea Academia-Industrial cooperation Society, Vol. 19, No. 11, pp. 31-37, Nov. 2018. DOI: http://dx.doi.org/10.5762/KAIS.2018.19.11.31
  14. W. Oh and J. Kim, "Single image haze removal technique via pixel-based joint BDCP and hierarchical bilateral filter," Journal of the Korea Institute of Electronic Communication Sciences, Vol. 14, No. 1, pp. 257-264, Feb. 2019. https://doi.org/10.13067/JKIECS.2019.14.1.257
  15. J. Kim, "Efficient single image dehazing by pixel-based JBDCP and low complexity transmission estimation," Journal of the Korea Institute of Electronic Communication Sciences, Vol. 14, No. 5, pp. 977-984, Oct. 2019.
  16. S. Salazar-Colores, J. Ramos-Arreguin, J. Pedraza-Ortega, and J. Rodriguez-Resendiz, "Efficient single image dehazing by modifying the dark channel prior," The European Association for Signal Processing (EURASIP ) Journal on Image and Video Processing, Vol. 2019:66, No. 1, pp. 1-8, May 2019. DOI: http://dx.doi.org/10.1186/s13640-019-0447-2
  17. Z. Mi, H. Zhou, Y. Zheng, and M. Wang, "Single image dehazing via multi-scale gradient domain contrast enhancement," IET Image Processing, Vol. 10, No. 3, pp. 206-214, Mar. 2016. DOI: http://dx.doi.org/10.1049/iet-ipr.2015.0112
  18. A. Levin D. Lischinski, and Y. Weiss, "A closed form solution to natural image matting," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 30, No. 2, pp. 228-242, Feb. 2008. DOI: http://dx.doi.org/10.1109/TPAMI.2007.1177