Synthesis of Lu3Al5O12:Ce3+ Nano Phosphor by Coprecipitation Method, and Their Optical Properties

공침법을 이용한 Lu3Al5O12:Ce3+ 나노 형광체 합성과 광학적 특성 분석

  • Kang, Taewook (Interdisciplinary Program of LED and Solid State Lighting Engineering, Pukyong National University) ;
  • Kang, Hyeonwoo (Department of Display Engineering, Pukyong National University) ;
  • Kim, Jongsu (Department of Display Engineering, Pukyong National University) ;
  • Kim, Gwangchul (Physic Department, School of Liberal Arts, KOREA TECH)
  • 강태욱 (부경대학교 LED공학협동과정) ;
  • 강현우 (부경대학교 융합디스플레이공학과) ;
  • 김종수 (부경대학교 융합디스플레이공학과) ;
  • 김광철 (한국기술교육대학교 교양학부 물리학전공)
  • Received : 2019.11.22
  • Accepted : 2019.12.12
  • Published : 2019.12.31

Abstract

LuAG:Ce(Lu3Al5O12:Ce3+) nano phosphor were synthesized by applying the coprecipitation method. It is used to increase the color rendering of phosphor ceramic plate for high power LEDs and laser lighting. Internal quantum efficiency and absorption of LuAG:Ce nano phosphor are 51.5 % and 64.4 %, respectively, which is higher than the previously studied nano phosphors. The maximum absorption wavelength of this phosphor is 450 nm blue light, and the emission wavelength is 510 nm. The emission wavelength shifted to longer wavelength when the concentration of Ce increased in the heat treatment of the reducing atmosphere. Thermal quenching of LuAG nano phosphor was 70 % at 200 ℃, it was explained by their significant quenching of all raman scattering modes, implying the restriction of electron-phonon couplings caused by their defects.

Keywords

References

  1. S. Nakamura, T. Mukai and M. Senoh, "Candela class high brightness InGaN/AlGaN double heterostructure blue light emitting diodes", Appl. Phys. Lett. Vol. 64, pp. 1687-1689, 1994. https://doi.org/10.1063/1.111832
  2. R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys and R. O. Carlson, "Coherent Light Emission From GaAs Junctions", Phys. Rev. Lett. Vol. 9, pp. 366-369, 1962. https://doi.org/10.1103/PhysRevLett.9.366
  3. Z. I. Alferov, V. M. Andreev, D. Z. Garbuzov, Y. V. Zhilyaev, E. P. Morozov, E. L. Portnoi and V. G. Trofim, "Investigation of the influence of the AlAs-GaAs heterostructure parameters on the laser threshold current and the realization of continuous emission at room temperature", Sov. Phys. Semicond Vol. 4 (9), pp. 1573-1575, 1971.
  4. I. Hayashi, M. B. Panish, P. W. Foy and S. Sumuski, "Junction lasers which operate continuously at room temperature", Appl. Phys. Lett., Vol. 17, pp. 109-111, 1970. https://doi.org/10.1063/1.1653326
  5. G. Blasse and B. C. Grabmaier, "Luminescent materials", Berlin, Springer-Verlag., 1994.
  6. W. M. Yen, S. Shionoya and H. Yamamoto, "Phosphor handbook", CRC press 2007.
  7. T. Kang, S. Lim, J. Kim and B. Lee, "Properties of $Y_3Al_5O_{12}:Ce^{3+}$, $Pr^{3+}$ Single Crystal for White Laser Lightings", Journal of the semiconductor & Display Technology, Vol. 17, pp. 37-41, 2018.
  8. Z. Daia, V. Boiko, M.Markowska, A.Gerus, K.Grzeszkiewicz, J.Holsa, M.Saladino, D.Hreniak, "Optical studies of $Y_3(Al,Ga)_5O_{12}:Ce^{3+},Cr^{3+},Nd^{3+}$ nanophosphors obtained by the Pechini method", Journal of Rare Earths, Vol. 37, pp. 1132-1136, 2019. https://doi.org/10.1016/j.jre.2019.04.006
  9. Y. Song, T. Choi, T. Masaki, K.Senthil, D.H.Yoon, "Photoluminescence properties and synthesis of nanosized YAG: $Ce^{3+}$ phosphor via novel synthesis method", Curr. Appl. Phys., Vol. 12(2), pp. 479-482, 2012. https://doi.org/10.1016/j.cap.2011.08.004
  10. Y. Pan, M. Wu, Q. Su, "Comparative investigation on synthesis and photoluminescence of YAG:Ce phosphor", Mater. Sci. Eng. B., Vol. 106(3), pp. 251-256, 2004. https://doi.org/10.1016/j.mseb.2003.09.031
  11. Z. Wang, M. Xu, W. Zhang, M. Yin, "Synthesis and luminescent properties of nano-scale LuAG:$RE^{3+}$ (Ce,Eu) phosphors prepared by co-precipitation method", J. Lumin., pp. 122-123, 2007.
  12. H. L. Li, X. J. Liu, L. P. Huang, "Luminescent properties of LuAG:Ce phosphors with different Ce contents prepared by a sol-gel combustion method", Opt. Mater. Vol. 29, pp. 1138-1142, 2007. https://doi.org/10.1016/j.optmat.2006.05.002
  13. H. L. Li, X. J. Liu, R. J. Xie, Y. Zeng, L. P. Huang, "Fabrication of Transparent Cerium-Doped Lutetium Aluminum Garnet ceramics by Co-Precipitation Routes", J. Am. Ceram. Soc., Vol. 89 (7), pp. 2356-2358, 2006.
  14. E.V. Tret'yak, G.P. Shevchenko, M.V. Korjik, "Formation of high-density scintillation ceramic from LuAG:Ce + $Lu_2O_3$ powders obtained by co-precipitation method", Opt. Mater. Vol 46, pp 596-600, 2015. https://doi.org/10.1016/j.optmat.2015.05.036
  15. H.Sekhar, G. Rao, P. Reddy, D. Rao, "Preparation, structural and its enhanced green upconversion luminescence in rare-earth doped CdMnS nanopowders", J. Alloy Comp., Vol. 562, pp. 38-42, 2013. https://doi.org/10.1016/j.jallcom.2013.01.194
  16. Y. Zhang, L. LI, X. ZHANG, Q. XI, "Temperature effects on photoluminescence of YAG:$Ce^{3+}$ phosphor and performance in white light-emitting diodes", Journal of Rare Earths, Vol. 26, pp. 446-449, 2008. https://doi.org/10.1016/S1002-0721(08)60115-5
  17. V. Bachmann, C. Ronda, A. Meijerink, "Temperature Quenching of Yellow $Ce^{3+}$ Luminescence in YAG:Ce", Chem. Mater., Vol. 21(10), 2077-2084, 2009. https://doi.org/10.1021/cm8030768
  18. R. A. Hansel, S. W. Allison, and D. G. Walker, "Temperature-dependent luminescence of $Ce^{3+}$ in gallium-substituted garnets", Appl. Phys. Lett., Vol. 95, pp. 114102, 2009. https://doi.org/10.1063/1.3216583