A FIXED POINT APPROACH TO THE STABILITY OF AN ADDITIVE-CUBIC-QUARTIC FUNCTIONAL EQUATION

Yang-Hi Lee

Abstract. In this paper, we investigate the stability of an additive-cubic-quartic functional equation

$$
f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y)-12 f(y)-12 f(-y)=0
$$

by applying the fixed point theory in the sense of L. Cădariu and V. Radu.

1. Introduction

In 1940, Ulam [17] questioned the stability of group homomorphisms, and the following year Hyers [11] gave an affirmative answer to this problem for additive mappings between Banach spaces. Hyers' result has motivated many mathematicians to deal with this problem (cf. [8, 14]).

Throughout this paper, let V and W be real vector spaces and Y a real Banach space. For a given mapping $f: V \rightarrow W$, we use the following abbreviations

$$
\begin{aligned}
A f(x, y) & :=f(x+y)-f(x)-f(y), \\
C f(x, y) & :=f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y), \\
Q^{\prime} f(x, y) & :=f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y)-24 f(y)
\end{aligned}
$$

for all $x, y \in V$. Solution of the functional equations $A f(x, y)=0, C f(x, y)=0$ and $Q^{\prime} f(x, y)=0$ are called an additive mapping, a cubic mapping, and a quartic mapping, respectively. A mapping f is called an additive-cubic-quartic mapping if f is represented by sum of an additive mapping, a cubic mapping, and a quartic mapping. A functional equation is called an additive-cubic-quartic functional equation provided that each solution of that equation is an additive-cubic-quartic mapping and every additive-cubic-quartic mapping is a solution of that equation.

Received by the editors June 12, 2019. Accepted November 19, 2019.
2010 Mathematics Subject Classification. 39B82, 39B52.
Key words and phrases. stability, additive-cubic-quartic functional equation, fixed point theory.
M. E. Gordji et al. [9] investigated the additive-cubic-quartic functional equation

$$
\begin{aligned}
f(x+k y)+ & f(x-k y)-k^{2} f(x+y)-k^{2} f(x-y) \\
& -\left(k^{2}-1\right)\left(k^{2} f(y)+k^{2} f(-y)-2 f(x)\right)=0
\end{aligned}
$$

where $k \neq 0, \pm 1$ is an integer, J. M. Rassias [13] investigated the additive-cubicquartic functional equation

$$
\begin{aligned}
& 11 f(x+2 y+2 w)+11 f(x-2 y-2 w)-44 f(x+y+w)-44 f(x-y-w) \\
& -12 f(3 y+3 w)+48 f(2 y+2 w)-60 f(y+w)+66 f(x)=0,
\end{aligned}
$$

and many mathematicians $[6,10,16,18]$ investigated the additive-cubic-quartic functional equation

$$
\begin{aligned}
11 f(x+2 y) & +11 f(x-2 y) \\
= & 44 f(x+y)+44 f(x-y)+12 f(3 y)-48 f(2 y)+60 f(y)-66 f(x) .
\end{aligned}
$$

Now we consider the following functional equation

$$
\begin{align*}
f(x+2 y) & -4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y) \\
& -12 f(y)-12 f(-y)=0 . \tag{1.1}
\end{align*}
$$

The mapping $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x)=a x^{4}+b x^{3}+c x$ is a solution of this functional equation, where a, b, c are real constants.

In this paper, we will show that the functional equation (1.1) is an additive-cubicquartic functional equation and we introduce a strictly contractive mapping which allows us to use the fixed point theory for proving the stability of the functional equation (1.1) in the sense of L. Cădariu and V. Radu [4, 5]. Namely, starting from the given mapping f that approximately satisfies the functional equation (1.1), a solution F of the functional equation (1.1) is explicitly constructed by the formula

$$
F(x)=\lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 10^{i}}{16^{n}} f_{o}\left(2^{2 n-i} x\right)+\frac{f_{e}\left(2^{n} x\right)}{16^{n}}\right)
$$

or

$$
F(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i}\left(10^{i}(-16)^{n-i} f_{o}\left(\frac{x}{2^{2 n-i}}\right)+10^{i}(-96)^{n-i} f_{e}\left(\frac{x}{2^{2 n-i}}\right)\right),
$$

which approximates the mapping f.

2. Main Results

Recall the following result of Margolis and Diaz's fixed point theory.
Theorem 2.1 ($[7,15])$. Suppose that a complete generalized metric space (X, d), which means that the metric d may assume infinite values, and a strictly contractive mapping $J: X \rightarrow X$ with the Lipschitz constant $0<L<1$ are given. Then, for each given element $x \in X$, either

$$
d\left(J^{n} x, J^{n+1} x\right)=+\infty, \forall n \in \mathbb{N} \cup\{0\}
$$

or there exists a nonnegative integer k such that:
(1) $d\left(J^{n} x, J^{n+1} x\right)<+\infty$ for all $n \geq k$;
(2) the sequence $\left\{J^{n} x\right\}$ is convergent to a fixed point y^{*} of J;
(3) y^{*} is the unique fixed point of J in $Y:=\left\{y \in X, d\left(J^{k} x, y\right)<+\infty\right\}$;
(4) $d\left(y, y^{*}\right) \leq(1 /(1-L)) d(y, J y)$ for all $y \in Y$.

Throughout this paper, for a given mapping $f: V \rightarrow W$, we use the following abbreviations

$$
\begin{aligned}
f_{o}(x) & :=\frac{f(x)-f(-x)}{2}, \quad f_{e}(x):=\frac{f(x)+f(-x)}{2}, \\
D f(x, y): & f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y) \\
& -12 f(y)-12 f(-y)
\end{aligned}
$$

for all $x, y \in V$. As we stated in the previous section, a solution of $A f=0, C f=0$, and $Q^{\prime} f=0$ is called an additive, a cubic, and a quartic mapping, respectively. Now we will show that f is an additive-cubic-quartic mapping if f is a solution of the functional equation $D f(x, y)=0$ for all $x, y \in V$.

Lee and Jung [12] proved the following lemma from Baker's theorem [2].
Lemma 2.2 ([12, Corollary 2.2]). Let V and W are vector spaces over \mathbb{Q}, \mathbb{R} or \mathbb{C}, and $r \in \mathbb{Q}-\{0, \pm 1\}$. Suppose that n_{1}, \ldots, n_{m} are natural numbers, and $c_{l_{i}}, d_{l_{i}}, \alpha_{0}, \beta_{0}, \ldots, \alpha_{m}, \beta_{m}$ are scalar such that $\alpha_{j} \beta_{l}-\alpha_{l} \beta_{j} \neq 0$ whenever $0 \leq j<l \leq$ m. If a mapping $f: V \rightarrow W$ satisfies the equality $f(r x)=r^{k} f(x)$ for all $x \in V$ and the inequality

$$
f\left(\alpha_{0} x+\beta_{0} y\right)+\sum_{l=1}^{m} \sum_{i=1}^{n_{l}} c_{l_{i}} f\left(d_{l_{i}}\left(\alpha_{l} x+\beta_{l} y\right)\right)=0
$$

for all $x, y \in V$, then f is a monomial mapping of degree k.

Theorem 2.3. A mapping $f: V \rightarrow W$ satisfies $D f(x, y)=0$ for all $x, y \in V$ if and only if f is an additive-cubic-quartic mapping.

Proof. Define the mappings f_{1} and f_{2} by $f_{1}(x):=\frac{-f_{o}(2 x)+8 f_{o}(x)}{6}$ and $f_{2}(x):=$ $\frac{f_{o}(2 x)-2 f_{o}(x)}{6}$. If a mapping $f: V \rightarrow W$ satisfies $D f(x, y)=0$ for all $x, y \in V$, then f_{1}, f_{2}, f_{e} satisfy the equalities $D f_{1}(x, y)=0, D f_{2}(x, y)=0$, and $D f_{e}(x, y)=0$ for all $x, y \in V$. We can obtain the equalities $f_{1}(2 x)=2 f_{1}(x), f_{2}(2 x)=2^{3} f_{2}(x)$, $f_{e}(2 x)=2^{4} f_{e}(x)$ from the equalities $f_{e}(2 x)-16 f_{e}(x)=\frac{D f_{e}(0, x)}{2}$ and $f_{o}(4 x)-$ $10 f_{o}(2 x)+16 f_{o}(x)=D f_{o}(2 x, x)+4 D f_{o}(x, x)$ for all $x \in V$. According to Lemma $2.2, f_{1}, f_{2}, f_{e}$ are an additive mapping, a cubic mapping, and a quartic mapping, respectively. Since the equality $f=f_{1}+f_{2}+f_{e}$ holds, f is an additive-cubic-quartic mapping.

Conversely, assume that f_{1}, f_{2}, f_{3} are mappings satisfying the equalities $f:=$ $f_{1}+f_{2}+f_{3}, A f_{1}(x, y)=0, C f_{2}(x, y)=0$, and $Q^{\prime} f_{3}(x, y)=0$ for all $x, y \in V$. Then the equalities $f_{1}(x)=-f_{1}(-x), f_{2}(x)=-f_{2}(-x), f_{3}(x)=f_{3}(-x), f_{1}(2 x)=2 f_{1}(x)$, $f_{2}(2 x)=8 f_{2}(x)$, and $f_{3}(2 x)=16 f_{3}(x)$ hold for all $x \in V$. From the above equalities, we obtain the equalities

$$
\begin{aligned}
D f(x, y)= & D f_{1}(x, y)+D f_{2}(x, y)+D f_{3}(x, y) \\
= & -A f_{1}(x+2 y, x-2 y)+4 A f_{1}(x+y, x-y)+C f_{2}(x, y) \\
& -C f_{2}(x-y, y)+Q^{\prime} f_{3}(x, y) \\
= & 0
\end{aligned}
$$

as we desired.
In the following theorem, we can prove the generalized Hyers-Ulam stability of the functional equation (1.1) by using the fixed point theory.

Theorem 2.4. Let $f: V \rightarrow Y$ be a mapping for which there exists a mapping $\varphi: V^{2} \rightarrow[0, \infty)$ such that the inequality

$$
\begin{equation*}
\|D f(x, y)\| \leq \varphi(x, y) \tag{2.1}
\end{equation*}
$$

holds for all $x, y \in V$ and let $f(0)=0$. If there exists a constant $0<L<1$ such that φ has the property

$$
\begin{equation*}
\varphi(2 x, 2 y) \leq(\sqrt{41}-5) L \varphi(x, y) \tag{2.2}
\end{equation*}
$$

for all $x, y \in V$, then there exists a unique solution $F: V \rightarrow Y$ of (1.1) satisfying the inequality

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{\Phi(x)}{32(1-L)} \tag{2.3}
\end{equation*}
$$

for all $x \in V$, where $\Phi(x)=\varphi(2 x, x)+\varphi(-2 x,-x)+4 \varphi(x, x)+4 \varphi(-x,-x)+$ $\varphi(0, x)+\varphi(0,-x)$. In particular, F is represented by

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 10^{i}}{16^{n}} f_{o}\left(2^{2 n-i} x\right)+\frac{f_{e}\left(2^{n} x\right)}{16^{n}}\right) \tag{2.4}
\end{equation*}
$$

for all $x \in V$.
Proof. Let S be the set of all functions $g: V \rightarrow Y$ with $g(0)=0$. We introduce a generalized metric on S by

$$
d(g, h)=\inf \left\{K \in \mathbb{R}_{+} \mid\|g(x)-h(x)\| \leq K \Phi(x) \text { for all } x \in V\right\} .
$$

It is easy to show that (S, d) is a generalized complete metric space. Now we consider the mapping $J: S \rightarrow S$, which is defined by

$$
J g(x):=-\frac{g(4 x)}{32}+\frac{g(-4 x)}{32}+\frac{11 g(2 x)}{32}-\frac{9 g(-2 x)}{32}
$$

for all $x \in V$. Notice that the equality

$$
J^{n} g(x)=\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i} 10^{i}}{16^{n}} g_{o}\left(2^{2 n-i} x\right)+\frac{g_{e}\left(2^{n} x\right)}{16^{n}}
$$

holds for all $n \in \mathbb{N}$ and $x \in V$. Let $g, h \in S$ and let $K \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq K$. From the definition of d, we have

$$
\begin{aligned}
\|J g(x)-J h(x)\| \leq & \frac{1}{32}\|g(4 x)-h(4 x)\|+\frac{1}{32}\|g(-4 x)-h(-4 x)\| \\
& +\frac{11}{32}\|g(2 x)-h(2 x)\|+\frac{9}{32}\|g(-2 x)-h(-2 x)\| \\
\leq & K\left(\frac{\Phi(4 x)}{32}+\frac{\Phi(-4 x)}{32}+\frac{11}{32} \Phi(2 x)+\frac{9}{32} \Phi(-2 x)\right) \\
\leq & K\left(\frac{1}{16} \Phi(4 x)+\frac{10}{16} \Phi(2 x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq K\left(\frac{\sqrt{41}-5}{16} L \Phi(2 x)+\frac{10}{16} \Phi(2 x)\right) \\
& \leq K\left(\frac{(\sqrt{41}-5)^{2}}{16} L^{2} \Phi(x)+\frac{10(\sqrt{41}-5)}{16} L \Phi(x)\right) \\
& \leq K \frac{(\sqrt{41}-5)^{2}+10(\sqrt{41}-5)}{16} L \Phi(x) \\
& \leq L K \Phi(x)
\end{aligned}
$$

for all $x \in V$, which implies that

$$
d(J g, J h) \leq L d(g, h)
$$

for any $g, h \in S$. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L. Moreover, by (2.1) we see that

$$
\begin{aligned}
& \|f(x)-J f(x)\| \\
& =\frac{\|D f(2 x, x)-D f(-2 x,-x)+4 D f(x, x)-4 D f(-x,-x)-D f(0, x)\|}{32} \\
& \leq \frac{\varphi(2 x, x)+\varphi(-2 x,-x)+4 \varphi(x, x)+4 \varphi(-x,-x)+\varphi(0, x)}{32} \\
& \leq \frac{\Phi(x)}{32}
\end{aligned}
$$

for all $x \in V$. It means that $d(f, J f) \leq \frac{1}{32}<\infty$ by the definition of d. Therefore according to Theorem 2.1, the sequence $\left\{J^{n} f\right\}$ converges to the unique fixed point $F: V \rightarrow Y$ of J in the set $T=\{g \in S \mid d(f, g)<\infty\}$, which is represented by (2.4) for all $x \in V$. Notice that

$$
d(f, F) \leq \frac{1}{1-L} d(f, J f) \leq \frac{1}{32(1-L)}
$$

which implies (2.3). By the definition of F, together with (2.1) and (2.2), we have

$$
\begin{aligned}
\|D F(x, y)\|= & \lim _{n \rightarrow \infty}\left\|D J^{n} f(x, y)\right\| \\
= & \lim _{n \rightarrow \infty} \| \sum_{i=0}^{n}{ }_{n} C_{i} \frac{(-1)^{n-i}(10)^{i}}{16^{n}} D f_{o}\left(2^{2 n-i} x, 2^{2 n-i} y\right) \\
& +\frac{D f_{e}\left(2^{n} x, 2^{n} y\right)}{16^{n}} \| \\
\leq & \lim _{n \rightarrow \infty} \sum_{i=0}^{n} \frac{{ }_{n} C_{i}}{2} \frac{10^{i}}{16^{n}}\left(\varphi\left(2^{2 n-i} x, 2^{2 n-i} y\right)+\varphi\left(-2^{2 n-i} x,-2^{2 n-i} y\right)\right) \\
& +\lim _{n \rightarrow \infty} \frac{\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right)}{2 \cdot 16^{n}}
\end{aligned}
$$

$$
\begin{aligned}
\leq & \lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n}{ }_{n} C_{i} \frac{10^{i}}{16^{n}}(\sqrt{41}-5)^{n-i} L^{n-i}\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right)\right. \\
& \left.+\frac{1}{16^{n}}\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right)\right) \\
\leq & \lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n}{ }_{n} C_{i} \frac{(\sqrt{41}-5)^{n-i} 10^{i}}{16^{n}}+\frac{1}{16^{n}}\right)\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right) \\
\leq & \lim _{n \rightarrow \infty}\left(\frac{((\sqrt{41}-5)+10)^{n}}{16^{n}}+\frac{1}{16^{n}}\right)\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right) \\
\leq & \lim _{n \rightarrow \infty}\left(\frac{(\sqrt{41}+5)^{n}}{16^{n}}+\frac{1}{16^{n}}\right)\left(\varphi\left(2^{n} x, 2^{n} y\right)+\varphi\left(-2^{n} x,-2^{n} y\right)\right) \\
\leq & \lim _{n \rightarrow \infty}\left(\frac{(\sqrt{41}+5)^{n}(\sqrt{41}-5)^{n}}{16^{n}}+\frac{(\sqrt{41}-5)^{n}}{16^{n}}\right) L^{n}(\varphi(x, y)+\varphi(-x,-y)) \\
\leq & \lim _{n \rightarrow \infty} 2 L^{n}(\varphi(x, y)+\varphi(-x,-y)) \\
= & 0
\end{aligned}
$$

for all $x, y \in V$ i.e., F is a solution of the functional equation (1.1). Notice that if F is a solution of the functional equation (1.1), then the equality $F(x)-J F(x)=$ $\frac{D F(2 x, x)-D F(-2 x,-x)+4 D F x, x)-4 D F(-x,-x)-D F(0, x)}{32}$ implies that F is a fixed point of J.

Theorem 2.5. Let $f: V \rightarrow Y$ be a mapping for which there exists a mapping $\varphi: V^{2} \rightarrow[0, \infty)$ such that the inequality (2.1) holds for all $x, y \in V$ and let $f(0)=0$. If there exists a constant $0<L<1$ such that φ has the property

$$
\begin{equation*}
L \varphi(2 x, 2 y) \geq 16 \varphi(x, y) \tag{2.5}
\end{equation*}
$$

for all $x, y \in V$, then there exists a unique solution $F: V \rightarrow Y$ of (1.1) satisfying the inequality

$$
\begin{equation*}
\|f(x)-F(x)\| \leq \frac{\Psi(x)}{1-L} \tag{2.6}
\end{equation*}
$$

for all $x \in V$, where $\Psi(x)$ is given by

$$
\Psi(x):=4 \varphi\left(\frac{x}{4}, \frac{x}{4}\right)+\varphi\left(\frac{x}{2}, \frac{x}{4}\right)+4 \varphi\left(\frac{-x}{4}, \frac{-x}{4}\right)+\varphi\left(\frac{-x}{2}, \frac{-x}{4}\right)
$$

In particular, F is represented by

$$
\begin{equation*}
F(x)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i}\left(10^{i}(-16)^{n-i} f_{o}\left(\frac{x}{2^{2 n-i}}\right)+10^{i}(-96)^{n-i} f_{e}\left(\frac{x}{2^{2 n-i}}\right)\right) \tag{2.7}
\end{equation*}
$$

for all $x \in V$.

Proof. Let the set S be the set as in the proof of Theorem 2.4. We give a generalized metric on S by

$$
d(g, h)=\inf \left\{K \in \mathbb{R}_{+} \mid\|g(x)-h(x)\| \leq K \Psi(x) \text { for all } x \in V\right\} .
$$

Now we consider the mapping $J: S \rightarrow S$ defined by

$$
J g(x):=10 g\left(\frac{x}{2}\right)+40 g\left(\frac{x}{4}\right)+56 g\left(\frac{-x}{4}\right)
$$

for all $x \in V$. Notice that the equality

$$
J^{n} g(x)=\sum_{i=0}^{n}{ }_{n} C_{i}\left(10^{i}(-16)^{n-i} g_{o}\left(\frac{x}{2^{2 n-i}}\right)+10^{i}(-96)^{n-i} g_{e}\left(\frac{x}{2^{2 n-i}}\right)\right)
$$

holds for all $n \in \mathbb{N}$ and $x \in V$. Let $g, h \in S$ and let $K \in[0, \infty]$ be an arbitrary constant with $d(g, h) \leq K$. From the definition of d, we have

$$
\begin{aligned}
\|J g(x)-J h(x)\| & \leq 10\left\|g\left(\frac{x}{2}\right)-h\left(\frac{x}{2}\right)\right\| \\
& +40\left\|g\left(\frac{x}{4}\right)-h\left(\frac{x}{4}\right)\right\|+56\left\|g\left(\frac{-x}{4}\right)-h\left(\frac{-x}{4}\right)\right\| \\
& \leq 96 K \Psi\left(\frac{x}{4}\right)+10 K \Psi\left(\frac{x}{2}\right) \\
& \leq L^{2} \frac{6}{16} K \Psi(x)+\frac{10}{16} L K \Psi(x) \\
& \leq L K \Psi(x)
\end{aligned}
$$

for all $x \in V$, which implies that

$$
d(J g, J h) \leq L d(g, h)
$$

for any $g, h \in S$. That is, J is a strictly contractive self-mapping of S with the Lipschitz constant L. Moreover, by (2.1) we see that

$$
\begin{aligned}
\|f(x)-J f(x)\| & =\left\|D f\left(\frac{x}{2}, \frac{x}{4}\right)+4 D f\left(\frac{x}{4}, \frac{x}{4}\right)\right\| \\
& \leq \varphi\left(\frac{x}{2}, \frac{x}{4}\right)+\varphi\left(\frac{-x}{2}, \frac{-x}{4}\right)+4 \varphi\left(\frac{x}{4}, \frac{x}{4}\right)+4 \varphi\left(\frac{-x}{4}, \frac{-x}{4}\right) \\
& \leq \Psi(x)
\end{aligned}
$$

for all $x \in V$. It means that $d(f, J f) \leq 1<\infty$ by the definition of d. Therefore according to Theorem 2.1, the sequence $\left\{J^{n} f\right\}$ converges to the unique fixed point $F: V \rightarrow Y$ of J in the set $T=\{g \in S \mid d(f, g)<\infty\}$, which is represented by (2.7)
for all $x \in V$. Notice that

$$
d(f, F) \leq \frac{1}{1-L} d(f, J f) \leq \frac{1}{1-L}
$$

which implies (2.6). By the definition of F, together with (2.1) and (2.5), we have

$$
\begin{aligned}
\|D F(x, y)\|= & \lim _{n \rightarrow \infty}\left\|D J^{n} f(x, y)\right\| \\
= & \lim _{n \rightarrow \infty} \| \sum_{i=0}^{n}{ }_{n} C_{i} 10^{i}(-16)^{n-i} D f_{o}\left(\frac{x}{2^{2 n-i}}, \frac{y}{2^{2 n-i}}\right) \\
& \left.+10^{i}(-96)^{n-i} D f_{e}\left(\frac{x}{2^{2 n-i}}, \frac{y}{2^{2 n-i}}\right)\right) \| \\
\leq & \lim _{n \rightarrow \infty} \sum_{i=0}^{n}{ }_{n} C_{i} 10^{i} 96^{n-i}\left(\varphi\left(\frac{x}{2^{2 n-i}}, \frac{y}{2^{2 n-i}}\right)+\varphi\left(\frac{-x}{2^{2 n-i}}, \frac{-y}{2^{2 n-i}}\right)\right) \\
\leq & \lim _{n \rightarrow \infty}\left(\sum_{i=0}^{n}{ }_{n} C_{i} 10^{i} 6^{n-i} L^{n-i}\left(\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)+\varphi\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right)\right)\right. \\
\leq & \lim _{n \rightarrow \infty}(10+6)^{n}\left(\varphi\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)+\varphi\left(\frac{-x}{2^{n}}, \frac{-y}{2^{n}}\right)\right) \\
\leq & \lim _{n \rightarrow \infty} L^{n}(\varphi(x, y)+\varphi(-x,-y)) \\
= & 0
\end{aligned}
$$

for all $x, y \in V$ i.e., F is a solution of the functional equation (1.1). Notice that if F is a solution of the functional equation (1.1), then the equality $F(x)-J F(x)=$ $D F\left(\frac{x}{2}, \frac{x}{4}\right)+4 D F\left(\frac{x}{4}, \frac{x}{4}\right)$ implies that F is a fixed point of J.

References

1. T. Aoki: On the stability of the linear transformation in Banach spaces. J. Math. Soc. Japan 2 (1950), 64-66.
2. J. Baker: A general functional equation and its stability. Proc. Natl. Acad. Sci. 133 (2005), no. 6, 1657-1664.
3. L. Cădariu \& V. Radu: Fixed points and the stability of Jensen's functional equation. J. Inequal. Pure Appl. Math. 4 (2003), no. 1, Art. 4.
4. \qquad : Fixed points and the stability of quadratic functional equations. An. Univ. Timisoara Ser. Mat.-Inform. 41 (2003), 25-48.
5. \qquad : On the stability of the Cauchy functional equation: a fixed point approach in Iteration Theory. Grazer Mathematische Berichte, Karl-Franzens-Universitäet, Graz, Graz, Austria 346 (2004), 43-52.
6. Y.J. Cho \& R. Saadati: Lattictic non-archimedean random stability of ACQ functional equation. Adv. Differ. Equ. 2011, no. 1, 31.
7. J.B. Diaz \& B. Margolis: A fixed point theorem of the alternative for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 74 (1968), 305-309.
8. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
9. M.E. Gordji, Y.J. Cho, H. Khodaei \& M. Ghanifard: Solutions and stability of generalized mixedtType QCA-functional equations in random normed spaces. Annals of the Alexandru Ioan Cuza University-Mathematics 59 (2013), no. 2, 299-320.
10. M.E. Gordji, S.K. Gharetapeh, C. Park \& S. Zolfaghri: Stability of an additive-cubicquartic functional equation. Adv. Differ. Equ. 2009 Article ID 395693.
11. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222-224.
12. Y.-H. Lee \& S.-M. Jung: Generalized Hyers-Ulam stability of some cubic-quadraticadditive type functional equations. (2000), submitted.
13. J M. Rassias, M. Arunkumar, E. Sathya \& N. Mahesh Kumar: Solution and Stability of an ACQ Functional Equation in Generalized 2-Normed Spaces. Intern. J. Fuzzy Mathematical Archive 7 (2015), 213-224.
14. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
15. I.A. Rus: Principles and Applications of Fixed Point Theory. Ed. Dacia, Cluj-Napoca 1979(in Romanian).
16. R. Saadati, M.M. Zohdi \& S.M. Vaezpour: Nonlinear L-random stability of an ACQ functional equation. J. Inequal. Appl. 2011 Article ID 194394.
17. S.M. Ulam: A Collection of Mathematical Problems. Interscience, New York, 1960.
18. Z. Wang, X. Li \& Th.M. Rassias: Stability of an additive-cubic-quartic functional equation in multi-Banach spaces. Abstr. Appl. Anal. 2011 Article ID 536520.

Department of Mathematics Education, Gongju National University of Education, Gonguu 32553, Republic of Korea
Email address: lyhmzi@gjue.ac.kr

