$(L, *, \odot)$-QUASIUNIFORM CONVERGENCE SPACES

Jung Mi Ko ${ }^{a}$ and Yong Chan Kim ${ }^{\text {b,* }}$

Abstract

In this paper, we define the notion of $(L, *, \odot)$-quasiuniform convergence spaces on ecl-premonoid. From $(L, *, \odot)$-quasiuniform structures, we can obtain various $(L, *, \odot)$-quasiuniform convergence structures and give their examples.

1. Introduction

Gäher [2,3] introduced the notions of L-filters in a frame. Höhle and Sostak [4] introduced the concept of L-filters for a complete quasimonoidal lattice L. For the case that the lattice is a stsc quantale, L-filters were introduced in [12]. Jäger [5$6]$ developed stratified L-convergence structures based on the concepts of L-filters where L is a complete Heyting algebra. Yao [14] extended stratified L-convergence structures to complete residuated lattices and investigated between stratified L convergence structures and L-fuzzy topological spaces. As an extension of Yao [14], Fang [7-11] introduced L-ordered convergence structures and (pre, quasi,semi) uniform convergence spaces on L-filters and investigated their relations.

In this paper, we define the $(L, *, \odot)$-quasiuniform convergence spaces as an extension of Fang's uniform convergence spaces on ecl-premonoid in Orpen's sense [13]. From $(L, *, \odot)$-quasiuniform structures, we can obtain various $(L, *, \odot)$-quasiuniform convergence structures and give their examples.

2. Preliminaries

Definition 2.1 ([13]). A complete lattice (L, \leq, \perp, \top) is called a GL-monoid (L, \leq $, *, \perp, \top)$ with a binary operation $*: L \times L \rightarrow L$ satisfying the following conditions:

[^0](G1) $a * \top=a$, for all $a \in L$,
(G2) $a * b=b * a$, for all $a, b \in L$,
(G3) $a *(b * c)=(a * b) * c$, for all $a, b \in L$,
(G4) if $a \leq b$, there exists $c \in L$ such that $b * c=a$,
(G5) $a * \bigvee_{i \in \Gamma} b_{i}=\bigvee_{i \in \Gamma}\left(a * b_{i}\right)$.
We can define an implication operator:
$$
a \Rightarrow b=\bigvee\{c \mid a * c \leq b\}
$$

Example 2.2 ($[1,4,13]$). (1) A continuous t-norm $([0,1], \leq, *)$ is a GL-monoid.
(2) A frame (L, \leq, \wedge) is a GL-monoid.

Definition 2.3 ($[1,4,13])$. A complete lattice (L, \leq, \perp, T) is called a cl-premonoid (L, \leq, \odot) with a binary operation $\odot: L \times L \rightarrow L$ satisfying the following conditions:
(CL1) $a \leq a \odot \top$ and $a \leq \top \odot a$, for all $a \in L$,
(CL2) if $a \leq b$ and $c \leq d$, then $a \odot c \leq b \odot d$,
(CL3) $a \odot \bigvee_{i \in \Gamma} b_{i}=\bigvee_{i \in \Gamma}\left(a \odot b_{i}\right)$ and $\bigvee_{j \in \Gamma} a_{j} \odot b=\bigvee_{j \in \Gamma}\left(a_{j} \odot b\right)$.
We can define an implication operator:

$$
a \rightarrow b=\bigvee\{c \mid a \odot c \leq b\}
$$

Example 2.4 ($[1,4,13]$). (1) Every GL-monoid $(L, \leq, *)$ is a cl-premonoid.
(2) Defines maps $\odot_{i}:[0,1] \times[0,1] \rightarrow[0,1]$ as follows:

$$
x \odot_{1} y=x^{\frac{1}{p}} \cdot y^{\frac{1}{p}}(p \geq 1), x \odot_{2} y=\left(x^{p}+y^{p}\right) \wedge 1(p \geq 1) .
$$

Then $\left(L, \leq, \odot_{i}\right)$ is a cl-premonoid for $i=1,2$.
Definition 2.5 ($[1,4,13])$. A complete lattice (L, \leq, \perp, T) is called an ecl-premonoid $(L, \leq, \odot, *)$ with a GL-monoid $(L, \leq, *)$ and a cl-premonoid (L, \leq, \odot) which satisfy the following condition:
(D) $(a \odot b) *(c \odot d) \leq(a * c) \odot(b * d)$, for all $a, b, c, d \in L$.

An ecl-premonoid $(L, \leq, \odot, *)$ is called an M-ecl-premonoid if it satisfiesthe following condition:
(M) $a \leq a \odot a$ for all $a \in L$.

In this paper, we always assume that $(L, \leq, \odot, *)$ is an ecl-premonoid unless otherwise specified.

Example $2.6([1,4,13])$. (1) Let $(L, \leq, *)$ be a GL-monoid and (L, \leq, \wedge) is a cl-premonoid. Then $(L, \leq, \wedge, *)$ is an M-ecl-premonoid.
(2) Let $(L, \leq, *)$ be a GL-monoid. Then $(L, \leq, *, *)$ is an ecl-premonoid. If $*=\cdot$, $0.5 \not \leq 0.5 \cdot 0.5=0.25$. (L, \leq, \cdot, \cdot) is not an M-ecl-premonoid.
(3) Let (L, \leq, \cdot) be a GL-monoid. Define a map $\odot:[0,1] \times[0,1] \rightarrow[0,1]$ as $x \odot y=(x+y) \wedge 1$. Then (L, \leq, \odot, \cdot) is not an M-cl-premonoid because

$$
0.7=(0.3 \odot 0.4) \cdot(0.5 \odot 0.7) \not \leq(0.3 \cdot 0.5) \odot(0.4 \cdot 0.7)=0.15+0.28=0.43
$$

(4) Let (L, \leq, \cdot) be a GL-monoid. Define a map $\odot:[0,1] \times[0,1] \rightarrow[0,1]$ as $x \odot y=x^{\frac{1}{3}} \cdot y^{\frac{1}{3}}$. Then (L, \leq, \odot, \cdot) is an M-cl-premonoid.

Lemma $2.7([1,4,13])$. Let $(L, \leq, \odot, *)$ be an ecl-premonoid. For each $a, b, c, d, a_{i}, b_{i} \in$ L and for $\uparrow \in\{\rightarrow, \Rightarrow\}$, we have the following properties.
(1) If $b \leq c$, then $a \odot b \leq a \odot c$ and $a * b \leq a * c$.
(2) $a \odot b \leq c$ iff $a \leq b \rightarrow c$. Moreover, $a * b \leq c$ iff $a \leq b \Rightarrow c$.
(3) If $b \leq c$, then $a \uparrow b \leq a \uparrow c$ and $c \uparrow a \leq b \uparrow a$.
(4) $a \leq b$ iff $a \Rightarrow b=\top$.
(5) $a * b \leq a \odot b, a \rightarrow b \leq a \Rightarrow b$ and $a *(b \odot c) \leq(a * b) \odot c$.
(6) $(a \uparrow b) \odot(c \uparrow d) \leq(a \odot c) \uparrow(b \odot d)$.
(7) $(b \uparrow c) \leq(a \odot b) \uparrow(a \odot c)$.
(8) $(b \uparrow c) \leq(a \uparrow b) \uparrow(a \uparrow c)$ and $(b \uparrow a) \leq(a \uparrow c) \uparrow(b \uparrow c)$.
(9) $(b \rightarrow c) \leq(a \uparrow b) \rightarrow(a \uparrow c)$ and $(b \uparrow a) \leq(a \rightarrow c) \rightarrow(b \uparrow c)$
(10) $a_{i} \uparrow b_{i} \leq\left(\bigwedge_{i \in \Gamma} a_{i}\right) \uparrow\left(\bigwedge_{i \in \Gamma} b_{i}\right)$.
(11) $a_{i} \uparrow b_{i} \leq\left(\bigvee_{i \in \Gamma} a_{i}\right) \uparrow\left(\bigvee_{i \in \Gamma} b_{i}\right)$.
(12) $(c \uparrow a) *(b \rightarrow d) \leq(a \rightarrow b) \rightarrow(c \uparrow d)$.

Definition $2.8([4,13])$. A mapping $\mathcal{F}: L^{X} \rightarrow L$ is called an $(L, *)$-filter on X if it satisfies the following conditions:
(F1) $\mathcal{F}\left(1_{\emptyset}\right)=\perp$ and $\mathcal{F}\left(1_{X}\right)=\top$, where $1_{\emptyset}(x)=\perp, 1_{X}(x)=\top$ for $x \in X$.
(F2) $\mathcal{F}(f * g) \geq \mathcal{F}(f) * \mathcal{F}(g)$, for each $f, g \in L^{X}$,
(F3) if $f \leq g, \mathcal{F}(f) \leq \mathcal{F}(g)$.
An $(L, *)$-filter is called stratified if
(S) $\mathcal{F}(\alpha * f) \geq \alpha * \mathcal{F}(f)$ for each $f \in L^{X}$ and $\alpha \in L$.

The pair (X, \mathcal{F}) is called an (resp. a stratified) $(L, *)$-filter space. We denote by $F_{*}(X)\left(\right.$ resp. $\left.F_{*}^{s}(X)\right)$ the set of all (resp. stratified) $(L, *)$-filters on X.

Let $\left(X, \mathcal{F}_{1}\right)$ and $\left(Y, \mathcal{F}_{2}\right)$ be two $(L, *)$-filter spaces and $\phi: X \rightarrow Y$ called an L-filter map if $\mathcal{F}_{2}(g) \leq \mathcal{F}_{1}\left(\phi^{\leftarrow}(g)\right)$ for all $g \in L^{Y}$ where $\phi^{\leftarrow}(g)=g \circ \phi$.

Example 2.9 ([4, 13]). (1) Define a map $[x]: L^{X} \rightarrow L$ as $[x](f)=f(x)$. Then $[x]$ is a stratified $(L, *)$-filter on X.
(2) Define a map inf : $L^{X} \rightarrow L$ as $\inf (f)=\bigwedge_{x \in X} f(x)$. Then inf is a stratified $(L, *)$-filter on X.

3. $(L, *, \odot)$-QUASIUNIFORM CONVERGENCE SpaCES

Theorem 3.1. Let $\mathcal{U}, \mathcal{V} \in F_{*}(X \times X)$. We define $\mathcal{U} \circ_{\odot} \mathcal{V}: L^{X \times X} \rightarrow L$ as follows:

$$
\left(\mathcal{U} \circ_{\odot} \mathcal{V}\right)(w)=\bigvee\{\mathcal{U}(u) \odot \mathcal{V}(v) \mid u \circ v \leq w\}
$$

where $u \circ v(x, z)=\bigvee_{y \in X}(u(x, y) * v(y, z))$.
(1) $u \circ v=\perp$ implies $\mathcal{U}(u) \odot \mathcal{V}(v)=\perp$ iff $(\mathcal{U} \circ \odot \mathcal{V}) \in F_{*}(X \times X)$.
(2) If $u \circ v=\perp$ implies $\mathcal{U}(u) \odot \mathcal{V}(v)=\perp$ and $\mathcal{U} \in F_{*}^{s}(X \times X)$ or $\mathcal{V} \in F_{*}^{s}(X \times X)$, then $\mathcal{U} \circ_{\odot} \mathcal{V} \in F_{*}^{s}(X \times X)$.
(3) If $\mathcal{U}\left(1_{\triangle}\right)=\top$ where $1_{\triangle}(x, x)=\top$ and $1_{\triangle}(x, y)=\perp$ for $x \neq y \in X, \mathcal{U} \circ \mathcal{U} \geq \mathcal{U}$.
(4) $\mathcal{U} \circ \odot[(x, x)] \in F_{*}^{s}(X \times X), \mathcal{U} \circ \odot[(x, x)] \geq \mathcal{U}$.
(5) $[(x, x)] \circ_{*}[(x, x)]=[(x, x)]$.
(6) $\bigwedge_{x \in X}[(x, x)] \circ_{*} \bigwedge_{x \in X}[(x, x)]=\bigwedge_{x \in X}[(x, x)]$.
(7) $\mathcal{U} \circ_{*} \mathcal{U}^{-1} \in F_{*}(X \times X)$.
(8) $\left(\mathcal{U} \circ_{\odot} \mathcal{V}\right)^{-1}=\mathcal{V}^{-1} \circ_{\odot} \mathcal{U}^{-1}$.

Proof. (1) Since $\left(u_{1} * u_{2}\right) \circ\left(v_{1} * v_{2}\right) \leq\left(u_{1} \circ v_{1}\right) *\left(u_{2} \circ v_{2}\right)$,

$$
\begin{aligned}
& (\mathcal{U} \circ \odot \mathcal{V})(u) *(\mathcal{U} \circ \odot \mathcal{V})(v) \\
& =\bigvee_{u_{1} \circ v_{1} \leq u}\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{V}\left(v_{1}\right)\right) * \bigvee_{u_{2} \circ v_{2} \leq v}\left(\mathcal{U}\left(u_{2}\right) \odot \mathcal{V}\left(v_{2}\right)\right) \\
& \leq \bigvee_{\left(u_{1} \circ v_{1}\right) *\left(u_{2} \circ v_{2}\right) \leq u * v}\left(\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{V}\left(v_{1}\right)\right) *\left(\mathcal{U}\left(u_{2}\right) \odot \mathcal{V}\left(v_{2}\right)\right)\right) \\
& \leq \bigvee_{\left(u_{1} \circ v_{1}\right) *\left(u_{2} \circ v_{2}\right) \leq u * v}\left(\left(\mathcal{U}\left(u_{1}\right) * \mathcal{U}\left(u_{2}\right)\right) \odot\left(\mathcal{V}\left(v_{1}\right) * \mathcal{V}\left(v_{2}\right)\right)\right) \\
& \leq \bigvee_{\left(u_{1} * u_{2}\right) \circ\left(v_{1} * v_{2}\right) \leq u * v}\left(\mathcal{U}\left(u_{1} * u_{2}\right) \odot \mathcal{V}\left(v_{1} * v_{2}\right)\right) \\
& \leq(\mathcal{U} \circ \odot \mathcal{V})(u * v) .
\end{aligned}
$$

Other cases are easily proved.
(2) Let $\mathcal{U} \in F_{*}^{s}(X \times X)$. Since $a *(b \odot c) \leq(a \odot \top) *(b \odot c) \leq(a * b) \odot(\top * c)=$ $(a * b) \odot c$, we have

$$
\begin{aligned}
\alpha *(\mathcal{U} \circ \odot \mathcal{V})(u) & =\alpha * \bigvee_{u_{1} \circ v_{1} \leq u}\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{V}\left(v_{1}\right)\right) \\
& =\bigvee_{u_{1} \circ v_{1} \leq u}\left(\alpha *\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{V}\left(v_{1}\right)\right)\right) \\
& \leq \bigvee_{\left(u_{1} \circ v_{1}\right) \leq u}\left(\left(\alpha * \mathcal{U}\left(u_{1}\right)\right) \odot \mathcal{V}\left(v_{1}\right)\right) \\
& \leq \bigvee_{\left(\left(\alpha * u_{1}\right) \circ v_{1}\right) \leq \alpha * u}\left(\mathcal{U}\left(\alpha * u_{1}\right) \odot \mathcal{V}\left(v_{1}\right)\right) \\
& \leq(\mathcal{U} \circ \odot \mathcal{V})(\alpha * u)
\end{aligned}
$$

(3) For $u \circ 1_{\triangle}=u, \mathcal{U} \circ \odot \mathcal{U}(u) \geq \mathcal{U}(u) \odot \mathcal{U}\left(1_{\triangle}\right)=\mathcal{U}(u)$.
(4) Since $[(x, x)](\alpha * u)=\alpha * u(x, x)=\alpha *[(x, x)](u),[(x, x)] \in F_{*}^{s}(X \times X)$. For $u \circ 1_{\triangle}=u$, we have

$$
(\mathcal{U} \circ \odot[(x, x)])(u) \geq \mathcal{U}(u) \odot[(x, x)]\left(1_{\Delta}\right)=\mathcal{U}(u) .
$$

(5) For $u_{1} \circ u_{2} \leq u$, we have

$$
\left([(x, x)] \circ_{*}[(x, x)]\right)(u)=\bigvee_{x \in X}\left([(x, x)]\left(u_{1}\right) *[(x, x)]\left(u_{2}\right)\right) \leq u(x, x)=[(x, x)](u) .
$$

(6) For $u \circ 1_{\triangle}=u$, we have

$$
\begin{aligned}
\left(\bigwedge_{x \in X}[(x, x)] 0_{*} \bigwedge_{x \in X}[(x, x)]\right)(u) & \geq \bigwedge_{x \in X}[(x, x)](u) *[(x, x)]\left(1_{\triangle}\right) \\
& =\bigwedge_{x \in X}[(x, x)](u) .
\end{aligned}
$$

For $u \circ v \leq w$,

$$
\left(\bigwedge_{x \in X}[(x, x)](u)\right) *\left(\bigwedge_{x \in X}[(x, x)](v)\right)=\bigwedge_{x \in X} u(x, x) * \bigwedge_{x \in X} v(x, x)
$$

$$
\leq \bigwedge_{x \in X}[(x, x)](u \circ v) \leq \bigwedge_{x \in X}[(x, x)](w)
$$

(7) For $u \circ v=\perp$, we have $\mathcal{U}(u) * \mathcal{U}^{-1}(v) \leq \mathcal{U}\left(u * v^{-1}\right)=\perp$ because $u * v^{-1}(x, y) \leq$ $u \circ v(x, x)=\perp$.
(8) Since $(v \circ u)^{-1}=u^{-1} \circ v^{-1}$, we have

$$
\begin{aligned}
\mathcal{V}^{-1} \odot \mathcal{U}^{-1}(w) & =\bigvee\left\{\mathcal{V}^{-1}(v) \odot \mathcal{U}^{-1}(u) \mid v \circ u \leq w\right\} \\
& =\bigvee\left\{\mathcal{V}\left(v^{-1}\right) \odot \mathcal{U}\left(u^{-1}\right) \mid u^{-1} \circ v^{-1} \leq w^{-1}\right\} \\
& =\mathcal{U} \circ \odot \mathcal{V}\left(w^{-1}\right)=(\mathcal{U} \circ \odot \mathcal{V})^{-1}(w) .
\end{aligned}
$$

Definition 3.2. A subset \mathcal{U} of $F_{*}(X \times X)$ is called an $(L, *, \odot)$-quasiuniform structure on X if it satisfies the following conditions:
(QU1) $\mathcal{U} \leq[(x, x)]$, for each $x \in X$.
(QU2) $\mathcal{U} \leq \mathcal{U} \circ \odot \mathcal{U}$.
The pair (X, \mathcal{U}) is called an $(L, *, \odot)$ quasiuniform space.
An $(L, *, \odot)$-quasiuniform space is called an $(L, *, \odot)$-uniform space if it satisfies the following condition;
(U) $\mathcal{U} \leq \mathcal{U}^{-1}$.

Let $\left(X, \mathcal{U}_{X}\right)$ and $\left(Y, \mathcal{U}_{Y}\right)$ be $(L, *, \odot)$-quasiuniform spaces. A map $\psi:\left(X, \mathcal{U}_{X}\right) \rightarrow$ $\left(Y, \mathcal{U}_{Y}\right)$ is called quasiuniformly continuous if for all $u \in L^{Y \times Y}, \mathcal{U}_{Y}(u) \leq \mathcal{U}_{Y}((\psi \times$ $\left.\psi)^{\leftarrow}(u)\right)$.

Example 3.3. Let $X=\{a, b, c\}$ be a set and $(L=[0,1], \leq, \wedge, *, 0,1)$ an M-eclpremonoid with $a * b=(a+b-1) \vee 0$. Put $u, v \in[0,1]^{X \times X}$ as follows:

$$
u(a, a)=u(b, b)=u(c, c)=1, \quad u(a, b)=u(b, a)=0.6,
$$

$$
\begin{gathered}
u(a, c)=u(c, a)=0.5, u(b, c)=u(c, b)=0.4 \\
v(a, a)=v(b, b)=1, v(c, c)=0.4, \quad v(a, b)=v(b, a)=0.6 \\
v(a, c)=v(c, a)=0.5, v(b, c)=v(c, b)=0.4
\end{gathered}
$$

(1) Define a $([0,1], *)$-filter as $\mathcal{U}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:

$$
\mathcal{U}(w)= \begin{cases}1, & \text { if } w=1_{X \times X} \\ 0.6, & \text { if } u \leq w \neq 1_{X \times X}, \\ 0.3, & \text { if } u * u \leq w \nsupseteq u, \\ 0, & \text { otherwise }\end{cases}
$$

Since $u \circ u=u$, we obtain $\mathcal{U}=\mathcal{U} \circ \wedge \mathcal{U}=\mathcal{U}^{-1}$ and

$$
\left(\mathcal{U} \circ_{*} \mathcal{U}\right)(w)= \begin{cases}1, & \text { if } w=1_{X \times X} \\ 0.2, & \text { if } u \leq w \neq 1_{X \times X} \\ 0, & \text { otherwise }\end{cases}
$$

Furthermore, $\mathcal{U}(w) \leq[(x, x)](w)$, for each $x \in X, w \in L^{X \times X}$. Hence \mathcal{U} is an $(L, *, \wedge)$-uniform structure on X but not an $(L, *, *)$-uniform structure on X because $0.6=\mathcal{U}(u) \not \leq\left(\mathcal{U} \circ_{*} \mathcal{U}\right)(u)=0.2$.
(2) Define [0, 1]-filter as $\mathcal{V}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:

$$
\mathcal{V}(w)= \begin{cases}1, & \text { if } w \geq 1 \triangle \\ 0.6, & \text { if } v \leq w \nsupseteq 1 \triangle \\ 0.3, & \text { if } v * v \leq w \nsupseteq v, \\ 0, & \text { otherwise. }\end{cases}
$$

Since $v \circ 1_{\triangle}=v$, we obtain $\mathcal{V} \circ_{*} \mathcal{V}=\mathcal{V} \circ \wedge \mathcal{V}=\mathcal{V}=\mathcal{V}^{-1}$. But $0.6=\mathcal{V}(v) \not \leq$ $[(c, c)](v)=0.4$. Hence \mathcal{V} is neither an $(L, *, \wedge)$-uniform structure nor an $(L, *, *)$ uniform structure on X.

Definition 3.4. A map $\Lambda: F_{*}(X \times X) \rightarrow L$ is called an $(L, *, \odot)$-quasiuniform convergence structure on X if it satisfies the following conditions:
$(\mathrm{QC} 1) \Lambda([(x, x)])=\top$, for each $x \in X$.
(QC2) If $\mathcal{U} \leq \mathcal{V}$, then $\Lambda(\mathcal{U}) \leq \Lambda(\mathcal{V})$.
$(\mathrm{QC} 3) \Lambda(\mathcal{U}) \odot \Lambda(\mathcal{V}) \leq \Lambda(\mathcal{U} \odot \mathcal{V})$.
$(\mathrm{QC} 4) ~ \Lambda(\mathcal{U}) \odot \Lambda(\mathcal{V}) \leq \Lambda\left(\mathcal{U} \circ_{\odot} \mathcal{V}\right)$ where $\mathcal{U} \circ_{\odot} \mathcal{V} \in F_{*}(X \times X)$.
The pair (X, Λ) is called an $(L, *, \odot)$-quasiuniform convergence space.
An $(L, *, \odot)$-quasiuniform convergence space is called an $(L, *, \odot)$-uniform convergence space if it satisfies the following condition;
(U) $\Lambda(\mathcal{U}) \leq \Lambda\left(\mathcal{U}^{-1}\right)$.

We say Λ_{1} is finer than Λ_{2} (or Λ_{2} is coarser than Λ_{1}) iff $\Lambda_{1} \leq \Lambda_{2}$.
We define $\Lambda_{\top}, \Lambda_{\perp}: F_{*}(X \times X) \rightarrow[0,1]$ as follows:

$$
\Lambda_{\top}(\mathcal{W})=\left\{\begin{array}{ll}
\mathrm{T}, & \text { if } \mathcal{W} \geq[(x, x)], \forall x \in X \\
\perp, & \text { otherwise. }
\end{array} \quad \Lambda_{\perp}(\mathcal{W})=\mathrm{\top}, \forall \mathcal{W} \in F(X \times X)\right.
$$

Then $\Lambda_{\top}\left(\right.$ resp. $\left.\Lambda_{\perp}\right)$ is the finest (resp. coarsest) $(L, *, \odot)$-quasiuniform convergence structure.

Let $\left(X, \Lambda_{X}\right)$ and $\left(Y, \Lambda_{Y}\right)$ be $(L, *, \odot)$-quasiuniform convergence spaces. A map $\psi:\left(X, \Lambda_{X}\right) \rightarrow\left(Y, \Lambda_{Y}\right)$ is called quasiuniformly continuous if for all $\mathcal{U} \in F_{*}(X \times X)$, $\Lambda_{X}(\mathcal{U}) \leq \Lambda_{Y}((\psi \times \psi) \Rightarrow(\mathcal{U}))$.

Theorem 3.5. Let $\left(X, \Lambda_{X}\right)$ be an $(L, *, \odot)$-quasiuniform convergence space. We define a map $\Lambda_{X}^{-1}: F_{*}(X \times X) \rightarrow L$ as

$$
\Lambda_{X}^{-1}(\mathcal{U})=\Lambda_{X}\left(\mathcal{U}^{-1}\right)
$$

Then
(1) $\left(X, \Lambda_{X}^{-1}\right)$ is an $(L, *, \odot)$-quasiuniform convergence space.
(2) If $\psi:\left(X, \Lambda_{X}\right) \rightarrow\left(Y, \Lambda_{Y}\right)$ is quasiuniformly continuous, then $\psi:\left(X, \Lambda_{X}^{-1}\right) \rightarrow$ $\left(Y, \Lambda_{X}^{-1}\right)$ is quasiuniformly continuous.

Proof. (1) (QC1) It is easy because $[(x, x)]^{-1}=[(x, x)]$.
(QC2) If $\mathcal{U} \leq \mathcal{V}$, then $\mathcal{U}^{-1} \leq \mathcal{V}^{-1}$. Thus $\Lambda_{X}^{-1}(\mathcal{U})=\Lambda_{X}\left(\mathcal{U}^{-1}\right) \leq \Lambda_{X}\left(\mathcal{V}^{-1}\right)=$ $\Lambda_{X}^{-1}(\mathcal{V})$.
$(\mathrm{QC} 3) \Lambda_{X}^{-1}(\mathcal{U}) \odot \Lambda_{X}^{-1}(\mathcal{V})=\Lambda_{X}\left(\mathcal{U}^{-1}\right) \odot \Lambda_{X}\left(\mathcal{V}^{-1}\right) \leq \Lambda_{X}\left(\mathcal{U}^{-1} \odot \mathcal{V}^{-1}\right)=\Lambda_{X}^{-1}(\mathcal{U} \odot \mathcal{V})$.
(QC4)

$$
\begin{aligned}
\Lambda_{X}^{-1}(\mathcal{U}) \odot \Lambda_{X}^{-1}(\mathcal{V}) & =\Lambda_{X}^{-1}(\mathcal{V}) \odot \Lambda_{X}^{-1}(\mathcal{U})=\Lambda_{X}\left(\mathcal{V}^{-1}\right) \odot \Lambda_{X}\left(\mathcal{U}^{-1}\right) \\
& \leq \Lambda_{X}\left(\mathcal{V}^{-1} \circ \odot \mathcal{U}^{-1}\right)=\Lambda_{X}\left((\mathcal{U} \odot \odot \mathcal{V})^{-1}\right) \\
& =\Lambda_{X}^{-1}(\mathcal{U} \circ \odot \mathcal{V}) .
\end{aligned}
$$

(2) $\Lambda_{X}^{-1}(\mathcal{U})=\Lambda_{X}\left(\mathcal{U}^{-1}\right) \leq \Lambda_{Y}\left((\psi \times \psi) \Rightarrow\left(\mathcal{U}^{-1}\right)\right)=\Lambda_{Y}\left(((\psi \times \psi) \Rightarrow(\mathcal{U}))^{-1}\right)=$ $\Lambda_{Y}^{-1}((\psi \times \psi) \Rightarrow(\mathcal{U}))$.

Example 3.6. Let $X=\{a, b, c\}$ be a set, $(L=[0,1], \leq, \odot, *, 0,1)$ an ecl-premonoid with $a * b=a \cdot b, a \odot b=a^{\frac{1}{3}} \cdot b^{\frac{1}{3}}$ and $u \in[0,1]^{X \times X}$ defined as follows:

$$
\begin{gathered}
u(a, a)=u(b, b)=u(c, c)=1, \quad u(a, b)=0.5, u(b, a)=0.6, \\
u(a, c)=u(c, a)=0.5, u(b, c)=0.6, u(c, b)=0.4 .
\end{gathered}
$$

Define [0, 1]-filter as $\mathcal{U}:[0,1]^{X \times X} \rightarrow[0,1]$ as follows:

$$
\mathcal{U}(w)= \begin{cases}1, & \text { if } w=1_{X \times X}, \\ 0.6^{n}, & \text { if } u^{n} \leq w \nsupseteq u^{n-1}, n \in N, \\ 0, & \text { otherwise. }\end{cases}
$$

where $u^{n+1}=u^{n} * u$ and $u^{0}=1_{X \times X}$.
Since $u^{n} \circ u^{n}=u^{n}$, we obtain

$$
\begin{aligned}
(\mathcal{U} \circ \odot \mathcal{U})(w) & = \begin{cases}1, & \text { if } w=1_{X \times X}, \\
0.6^{n} \odot 0.6^{n}, & \text { if } u^{n} \leq w \nsupseteq u^{n-1}, n \in N, \\
0, & \text { otherwise. }\end{cases} \\
(\mathcal{U} \odot \mathcal{U})(w) & = \begin{cases}1, & \text { if } w=1_{X \times X}, \\
0.6^{n} \odot 0.6^{n}, & \text { if } u^{n} \leq w \nsupseteq u^{n-1}, n \in N, \\
0, & \text { otherwise. }\end{cases}
\end{aligned}
$$

We define $\Lambda: F_{*}(X \times X) \rightarrow[0,1]$ as follows:

$$
\Lambda(\mathcal{W})= \begin{cases}1, & \text { if } \mathcal{W} \geq[(x, x)], x \in X \\ 0.5^{[n]}, & \text { if } \mathcal{U}^{[n]} \leq \mathcal{W} \nsupseteq \mathcal{U}^{n+1]}, n \in N \\ 0, & \text { otherwise } .\end{cases}
$$

where $\mathcal{U}^{[n+1]}=\mathcal{U}^{[n]} \odot \mathcal{U}$ and $0.5^{[n+1]}=0.5^{[n]} \odot 0.5$.
Then Λ is an $(L, *, \odot)$-quasiuniform convergence structure on X.
We obtain $\Lambda^{-1}: F(X \times X) \rightarrow[0,1]$ as follows:

$$
\Lambda^{-1}(\mathcal{W})= \begin{cases}1, & \text { if } \mathcal{W} \geq[(x, x)], x \in X \\ 0.5^{[n+1]}, & \text { if } \mathcal{V}^{[n]} \leq \mathcal{W} \nsupseteq \mathcal{V}^{[n+1]}, \\ 0, & \text { otherwise } .\end{cases}
$$

where $\mathcal{V}=\mathcal{U}^{-1}, \mathcal{V}^{[n+1]}=\mathcal{V}^{[n]} \odot \mathcal{V}$ and $0.5^{[n+1]}=0.5^{[n]} \odot 0.5$. Then Λ^{-1} is an $(L, *, \odot)$-quasiuniform convergence structure on X.

Example 3.7. Let $X=\{a, b, c\},([0,1], *), u \in[0,1]^{X \times X}$ and \mathcal{U} as defined in Example 12. We define $\Lambda: F_{*}(X \times X) \rightarrow[0,1]$ as follows:

$$
\Lambda(\mathcal{W})= \begin{cases}1, & \text { if } \mathcal{W} \geq[(x, x)], \\ 0.6, & \text { if } \mathcal{U} \leq \mathcal{W} \geq[(x, x)], \\ 0, & \text { otherwise. }\end{cases}
$$

Since $\mathcal{U} \circ \wedge \mathcal{U}=\mathcal{U} \wedge \mathcal{U}=\mathcal{U}=\mathcal{U}^{-1}, \Lambda$ is an $(L, *, \wedge)$-uniform convergence structure.
Theorem 3.8. Let $(L, \leq, \odot, *)$ be an M-ecl-premonoid. Let \mathcal{U} be a quasiuniform structure on X. We define a map $\Lambda^{\mathcal{U}}: F(X \times X) \rightarrow L$ as follows:

$$
\Lambda^{\mathcal{U}}(\mathcal{W})=\bigwedge_{u \in L^{X \times X}}(\mathcal{U}(u) \rightarrow \mathcal{W}(u)) .
$$

Then
(1) $\Lambda^{\mathcal{U}}$ is an $(L, *, \odot)$ quasiuniform convergence structure.
(2) If $\psi:\left(X, \mathcal{U}_{X}\right) \rightarrow\left(Y, \mathcal{U}_{Y}\right)$ is quasiuniformly continuous, then $\psi:\left(X, \Lambda_{X}^{\mathcal{U}}\right) \rightarrow$ $\left(Y, \Lambda_{Y}^{\mathcal{U}}\right)$ is quasiuniformly continuous.

Proof. (QC1) Since $\mathcal{U} \leq[(x, x)]$,

$$
\Lambda^{\mathcal{U}}([(x, x)])=\bigwedge_{u \in L^{X \times X}}(\mathcal{U}(u) \rightarrow[(x, x)](u))=\mathrm{T} .
$$

(QC3)

$$
\begin{aligned}
& \Lambda^{\mathcal{U}}\left(\mathcal{W}_{1}\right) \odot \Lambda^{\mathcal{U}}\left(\mathcal{W}_{2}\right) \\
& =\left(\bigwedge_{u \in L^{X \times X}}\left(\mathcal{U}(u) \rightarrow \mathcal{W}_{1}(u)\right)\right) \odot\left(\bigwedge_{v \in L^{X \times X}}\left(\mathcal{U}(v) \rightarrow \mathcal{W}_{2}(v)\right)\right) \\
& \leq \bigwedge_{u \in L^{X \times X}}\left(\left(\mathcal{U}(u) \rightarrow \mathcal{W}_{1}(u)\right) \odot\left(\mathcal{U}(u) \rightarrow \mathcal{W}_{2}(u)\right)\right) \\
& \leq \bigwedge_{u \in L^{X \times X}}\left((\mathcal{U}(u) \odot \mathcal{U}(u)) \rightarrow\left(\mathcal{W}_{1}(u) \odot \mathcal{W}_{2}(u)\right)\right) \\
& \leq \bigwedge_{u \in L^{X \times X}}\left(\mathcal{U}(u) \rightarrow\left(\mathcal{W}_{1} \odot \mathcal{W}_{2}\right)(u)\right) \\
& =\Lambda^{\mathcal{U}}\left(\mathcal{W}_{1} \odot \mathcal{W}_{2}\right) .
\end{aligned}
$$

(QC4)

$$
\begin{aligned}
& \Lambda^{\mathcal{U}}(\mathcal{V} \circ \odot \mathcal{W}) \\
& =\bigwedge_{u \in L^{X \times X}}(\mathcal{U}(u) \rightarrow(\mathcal{V} \circ \odot \mathcal{W})(u)) \\
& \left.\geq \bigwedge_{u \in L^{X \times X}}((\mathcal{U}) \circ \odot \mathcal{U})(u) \rightarrow(\mathcal{V} \circ \odot \mathcal{W})(u)\right) \\
& \left.\geq \bigwedge_{u \in L^{X \times X}}\left(\bigvee_{u_{1} \circ u_{2} \leq u}\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{U}\left(u_{2}\right)\right) \rightarrow(\mathcal{V} \circ \odot \mathcal{W})(u)\right)\right) \\
& =\bigwedge_{u \in L^{X \times X}} \bigwedge_{u_{1} \circ u_{2} \leq u}\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{U}\left(u_{2}\right) \rightarrow(\mathcal{V} \circ \odot \mathcal{W})(u)\right) \\
& \geq \bigwedge_{u \in L^{X \times X}} \bigwedge_{u_{1} \circ u_{2} \leq u}\left(\left(\mathcal{U}\left(u_{1}\right) \odot \mathcal{U}\left(u_{2}\right)\right) \rightarrow\left(\mathcal{V}\left(u_{1}\right) \odot \mathcal{W}\left(u_{2}\right)\right)\right) \\
& \geq \bigwedge_{u_{1} \in L^{X \times X}} \bigwedge_{u_{2} \in L^{X \times X}}\left(\left(\mathcal{U}\left(u_{1}\right) \rightarrow \mathcal{V}\left(u_{1}\right)\right) \odot\left(\mathcal{U}\left(u_{2}\right) \rightarrow \mathcal{W}\left(u_{2}\right)\right)\right) \\
& \geq\left(\bigwedge_{u_{1} \in L^{X \times X}}\left(\mathcal{U}\left(u_{1}\right) \rightarrow \mathcal{V}\left(u_{1}\right)\right)\right) \odot\left(\bigwedge_{u_{2} \in L^{X \times X}}\left(\mathcal{U}\left(u_{2}\right) \rightarrow \mathcal{W}\left(u_{2}\right)\right)\right) \\
& =\Lambda^{\mathcal{U}}(\mathcal{V}) \odot \Lambda^{\mathcal{U}}(\mathcal{W}) .
\end{aligned}
$$

(2)

$$
\begin{aligned}
& \Lambda_{X}^{\mathcal{U}_{X}}(\mathcal{W}) \rightarrow \Lambda_{Y}^{\mathcal{U}_{Y}}((\psi \times \psi) \Rightarrow(\mathcal{W})) \\
& \geq\left(\bigwedge_{u \in L^{X \times X}}\left(\mathcal{U}_{X}(u) \rightarrow \mathcal{W}(u)\right)\right) \\
& \rightarrow\left(\bigwedge_{v \in L^{Y \times Y}}\left(\mathcal{U}_{Y}(v) \rightarrow(\psi \times \psi) \Rightarrow(\mathcal{W})(v)\right)\right) \\
& \geq\left(\bigwedge_{v \in L^{Y \times Y}}\left(\mathcal{U}_{X}\left((\psi \times \psi)^{\leftarrow}(v)\right) \rightarrow \mathcal{W}\left((\psi \times \psi)^{\leftarrow}(v)\right)\right)\right) \rightarrow \\
& \left(\bigwedge_{v \in L^{Y \times Y}}\left(\mathcal{U}_{Y}(v) \rightarrow(\psi \times \psi) \Rightarrow(\mathcal{W})(v)\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \geq \bigwedge_{v \in L^{Y \times Y}}\left(\mathcal{U}_{X}\left((\psi \times \psi)^{\leftarrow}(v)\right) \rightarrow \mathcal{U}\left((\psi \times \psi)^{\leftarrow}(v)\right)\right) \rightarrow \\
& \left.\left(\mathcal{U}_{Y}(v) \rightarrow \mathcal{U}\left((\psi \times \psi)^{\leftarrow}(v)\right)\right)\right) \\
& \geq \bigwedge_{v \in L^{Y \times Y}}\left(\mathcal{U}_{Y}(v) \rightarrow \mathcal{U}_{X}\left((\psi \times \psi)^{\leftarrow}(v)\right)\right)
\end{aligned}
$$

Example 3.9. Let $X=\{a, b, c\},([0,1], *), u \in[0,1]^{X \times X}$ and \mathcal{U} as defined in Example 12. Since (X, \mathcal{U}) is an $(L, *, \wedge)$ is uniform structure and $(L, \leq, \wedge, *)$ is an M-ecl-premonoid, we obtain an $(L, *, \wedge)$-quasiuniform convergence structure $\Lambda^{\mathcal{U}}$: $F_{*}(X \times X) \rightarrow[0,1]$ as follows:

$$
\begin{aligned}
\Lambda^{\mathcal{U}}(\mathcal{W}) & =\bigwedge_{v \in L^{X \times X}}(\mathcal{U}(v) \rightarrow \mathcal{W}(v)) \\
& =(0.6 \rightarrow \mathcal{W}(u)) \wedge(0.3 \rightarrow \mathcal{W}(u * u))
\end{aligned}
$$

where $(a \rightarrow b)=1$ if $a \leq b$ and $(a \rightarrow b)=b$, otherwise.

References

1. R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, 2002.
2. W. Gähler: The general fuzzy filter approach to fuzzy topology I. Fuzzy Sets and Systems 76 (1995), 205-224.
3. \qquad : The general fuzzy filter approach to fuzzy topology II. Fuzzy Sets and Systems 76 (1995), 225-246.
4. U. Höhle \& A.P. Sostak: Axiomatic foundation of fixed-basis fuzzy topology, Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, Handbook of fuzzy set series. Kluwer Academic Publisher, Dordrecht, 1999.
5. G. Jäger: Subcategories of lattice-valued convergence spaces. Fuzzy Sets and Systems 156 (2005), 1-24.
6. \qquad : Pretopological and topological lattice-valued convergence spaces. Fuzzy Sets and Systems 158(2007), 424-435.
7. Jinming Fang: Stratified L-order convergence structures. Fuzzy Sets and Systems 161 (2010), 2130-2149.
8. \qquad : Lattice-valued semiuniform convergence spaces. Fuzzy Sets and Systems 195 (2012), 33-57.
9. \qquad : Stratified L-order quasiuniform limit spaces. Fuzzy Sets and Systems 227 (2013), 51-73.
10. \qquad : Lattice-valued preuniform convergence spaces. Fuzzy Sets and Systems 251 (2014), 52-70.
11. \qquad : Relationships between L-ordered convergence structures and strong L-tologies. Fuzzy Sets and Systems 161 (2010), 2923-2944.
12. Y.C. Kim \& J.M. Ko: Images and preimages of L-filter bases. Fuzzy Sets and Systems 173 (2005), 93-113.
13. D. Orpen \& G. Jäger: Lattice-valued convergence spaces. Fuzzy Sets and Systems 190 (2012), 1-20.
14. W. Yao: On many-valued L-fuzzy convergence spaces. Fuzzy Sets and Systems 159 (2008), 2503-2519.
${ }^{\text {a }}$ Department of Mathematics, Gangneung-Wonju National Gangneung 25457, Korea
Email address: jmko@gwnu.ac.kr
${ }^{\text {b }}$ Department of Mathematics, Gangneung-Wonju National Gangneung 25457, Korea Email address: yck@gwnu.ac.kr

[^0]: Received by the editors June 11, 2019. Accepted October 01, 2019.
 2010 Mathematics Subject Classification. 03E72, 54A40, 54B10.
 Key words and phrases. GL-monoid, cl-premonoid, ecl-premonoid, $(L, *)$-filters, $(L, *, \odot)$ quasiuniform convergence spaces.
 This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.
 *Corresponding author.

