$(L, *, \odot)$ -QUASIUNIFORM CONVERGENCE SPACES

Jung Mi Ko $^{\rm a}$ and Yong Chan Kim $^{\rm b,*}$

ABSTRACT. In this paper, we define the notion of $(L, *, \odot)$ -quasiuniform convergence spaces on ecl-premonoid. From $(L, *, \odot)$ -quasiuniform structures, we can obtain various $(L, *, \odot)$ -quasiuniform convergence structures and give their examples.

1. INTRODUCTION

Gäher [2,3] introduced the notions of L-filters in a frame. Höhle and Sostak [4] introduced the concept of L-filters for a complete quasimonoidal lattice L. For the case that the lattice is a stsc quantale, L-filters were introduced in [12]. Jäger [5-6] developed stratified L-convergence structures based on the concepts of L-filters where L is a complete Heyting algebra. Yao [14] extended stratified L-convergence structures to complete residuated lattices and investigated between stratified L-convergence structures and L-fuzzy topological spaces. As an extension of Yao [14], Fang [7-11] introduced L-ordered convergence structures and (pre, quasi, semi) uniform convergence spaces on L-filters and investigated their relations.

In this paper, we define the $(L, *, \odot)$ -quasiuniform convergence spaces as an extension of Fang's uniform convergence spaces on ecl-premonoid in Orpen's sense [13]. From $(L, *, \odot)$ -quasiuniform structures, we can obtain various $(L, *, \odot)$ -quasiuniform convergence structures and give their examples.

2. Preliminaries

Definition 2.1 ([13]). A complete lattice (L, \leq, \perp, \top) is called a *GL-monoid* $(L, \leq, *, \perp, \top)$ with a binary operation $*: L \times L \to L$ satisfying the following conditions:

*Corresponding author.

 $\bigodot 2019$ Korean Soc. Math. Educ.

Received by the editors June 11, 2019. Accepted October 01, 2019.

²⁰¹⁰ Mathematics Subject Classification. 03E72, 54A40, 54B10.

Key words and phrases. GL-monoid, cl-premonoid, ecl-premonoid, (L, *)-filters, $(L, *, \odot)$ -quasiuniform convergence spaces.

This work was supported by the Research Institute of Natural Science of Gangneung-Wonju National University.

(G1) $a * \top = a$, for all $a \in L$, (G2) a * b = b * a, for all $a, b \in L$, (G3) a * (b * c) = (a * b) * c, for all $a, b \in L$, (G4) if $a \leq b$, there exists $c \in L$ such that b * c = a, (G5) $a * \bigvee_{i \in \Gamma} b_i = \bigvee_{i \in \Gamma} (a * b_i)$. We can define an implication operator:

$$a \Rightarrow b = \bigvee \{c \mid a * c \le b\}.$$

Example 2.2 ([1, 4, 13]). (1) A continuous t-norm ([0, 1], \leq , *) is a GL-monoid. (2) A frame (L, \leq , \wedge) is a GL-monoid.

Definition 2.3 ([1, 4, 13]). A complete lattice (L, \leq, \perp, \top) is called a *cl-premonoid* (L, \leq, \odot) with a binary operation $\odot : L \times L \to L$ satisfying the following conditions: (CL1) $a \leq a \odot \top$ and $a \leq \top \odot a$, for all $a \in L$, (CL2) if $a \leq b$ and $c \leq d$, then $a \odot c \leq b \odot d$, (CL3) $a \odot \bigvee_{i \in \Gamma} b_i = \bigvee_{i \in \Gamma} (a \odot b_i)$ and $\bigvee_{j \in \Gamma} a_j \odot b = \bigvee_{j \in \Gamma} (a_j \odot b)$. We can define an implication operator:

$$a \to b = \bigvee \{c \mid a \odot c \le b\}.$$

Example 2.4 ([1, 4, 13]). (1) Every GL-monoid $(L, \leq, *)$ is a cl-premonoid.

(2) Defines maps $\odot_i : [0,1] \times [0,1] \rightarrow [0,1]$ as follows:

$$x \odot_1 y = x^{\frac{1}{p}} \cdot y^{\frac{1}{p}} (p \ge 1), x \odot_2 y = (x^p + y^p) \land 1(p \ge 1).$$

Then (L, \leq, \odot_i) is a cl-premonoid for i = 1, 2.

Definition 2.5 ([1, 4, 13]). A complete lattice (L, \leq, \perp, \top) is called an *ecl-premonoid* $(L, \leq, \odot, *)$ with a GL-monoid $(L, \leq, *)$ and a cl-premonoid (L, \leq, \odot) which satisfy the following condition:

(D) $(a \odot b) * (c \odot d) \le (a * c) \odot (b * d)$, for all $a, b, c, d \in L$.

An ecl-premonoid $(L, \leq, \odot, *)$ is called an M-ecl-premonoid if it satisfies the following condition:

(M) $a \leq a \odot a$ for all $a \in L$.

In this paper, we always assume that $(L, \leq, \odot, *)$ is an ecl-premonoid unless otherwise specified.

Example 2.6 ([1, 4, 13]). (1) Let $(L, \leq, *)$ be a GL-monoid and (L, \leq, \wedge) is a cl-premonoid. Then $(L, \leq, \wedge, *)$ is an M-ecl-premonoid.

(2) Let $(L, \leq, *)$ be a GL-monoid. Then $(L, \leq, *, *)$ is an ecl-premonoid. If $* = \cdot$, $0.5 \neq 0.5 \cdot 0.5 = 0.25$. (L, \leq, \cdot, \cdot) is not an M-ecl-premonoid.

(3) Let (L, \leq, \cdot) be a GL-monoid. Define a map $\odot : [0,1] \times [0,1] \rightarrow [0,1]$ as $x \odot y = (x+y) \land 1$. Then (L, \leq, \odot, \cdot) is not an M-cl-premonoid because

 $0.7 = (0.3 \odot 0.4) \cdot (0.5 \odot 0.7) \nleq (0.3 \cdot 0.5) \odot (0.4 \cdot 0.7) = 0.15 + 0.28 = 0.43$

(4) Let (L, \leq, \cdot) be a GL-monoid. Define a map $\odot : [0,1] \times [0,1] \rightarrow [0,1]$ as $x \odot y = x^{\frac{1}{3}} \cdot y^{\frac{1}{3}}$. Then (L, \leq, \odot, \cdot) is an *M-cl-premonoid*.

Lemma 2.7 ([1, 4, 13]). Let $(L, \leq, \odot, *)$ be an ecl-premonoid. For each $a, b, c, d, a_i, b_i \in L$ and for $\uparrow \in \{\rightarrow, \Rightarrow\}$, we have the following properties.

 $\begin{array}{ll} (1) \ If \ b \leq c, \ then \ a \odot b \leq a \odot c \ and \ a \ast b \leq a \ast c. \\ (2) \ a \odot b \leq c \ iff \ a \leq b \rightarrow c. \ Moreover, \ a \ast b \leq c \ iff \ a \leq b \Rightarrow c. \\ (3) \ If \ b \leq c, \ then \ a \uparrow b \leq a \uparrow c \ and \ c \uparrow a \leq b \uparrow a. \\ (4) \ a \leq b \ iff \ a \Rightarrow b = \top. \\ (5) \ a \ast b \leq a \odot b, \ a \rightarrow b \leq a \Rightarrow b \ and \ a \ast (b \odot c) \leq (a \ast b) \odot c. \\ (6) \ (a \uparrow b) \odot (c \uparrow d) \leq (a \odot c) \uparrow (b \odot d). \\ (7) \ (b \uparrow c) \leq (a \odot b) \uparrow (a \odot c). \\ (8) \ (b \uparrow c) \leq (a \uparrow b) \uparrow (a \uparrow c) \ and \ (b \uparrow a) \leq (a \uparrow c) \uparrow (b \uparrow c). \\ (9) \ (b \rightarrow c) \leq (a \uparrow b) \rightarrow (a \uparrow c) \ and \ (b \uparrow a) \leq (a \rightarrow c) \rightarrow (b \uparrow c) \\ (10) \ a_i \uparrow b_i \leq (\bigwedge_{i \in \Gamma} a_i) \uparrow (\bigwedge_{i \in \Gamma} b_i). \\ (11) \ a_i \uparrow b_i \leq (\bigvee_{i \in \Gamma} a_i) \uparrow (\bigvee_{i \in \Gamma} b_i). \\ (12) \ (c \uparrow a) \ast (b \rightarrow d) \leq (a \rightarrow b) \rightarrow (c \uparrow d). \end{array}$

Definition 2.8 ([4, 13]). A mapping $\mathcal{F} : L^X \to L$ is called an (L, *)-filter on X if it satisfies the following conditions:

- (F1) $\mathcal{F}(1_{\emptyset}) = \bot$ and $\mathcal{F}(1_X) = \top$, where $1_{\emptyset}(x) = \bot, 1_X(x) = \top$ for $x \in X$.
- (F2) $\mathcal{F}(f * g) \ge \mathcal{F}(f) * \mathcal{F}(g)$, for each $f, g \in L^X$,
- (F3) if $f \leq g$, $\mathcal{F}(f) \leq \mathcal{F}(g)$.
- An (L, *)-filter is called *stratified* if
- (S) $\mathcal{F}(\alpha * f) \ge \alpha * \mathcal{F}(f)$ for each $f \in L^X$ and $\alpha \in L$.

The pair (X, \mathcal{F}) is called an (resp. a stratified)(L, *)-filter space. We denote by $F_*(X)$ (resp. $F_*^s(X)$) the set of all (resp. stratified) (L, *)-filters on X.

Let (X, \mathcal{F}_1) and (Y, \mathcal{F}_2) be two (L, *)-filter spaces and $\phi : X \to Y$ called an *L*-filter map if $\mathcal{F}_2(g) \leq \mathcal{F}_1(\phi^{\leftarrow}(g))$ for all $g \in L^Y$ where $\phi^{\leftarrow}(g) = g \circ \phi$. **Example 2.9** ([4, 13]). (1) Define a map $[x] : L^X \to L$ as [x](f) = f(x). Then [x] is a stratified (L, *)-filter on X.

(2) Define a map inf : $L^X \to L$ as $\inf(f) = \bigwedge_{x \in X} f(x)$. Then inf is a stratified (L, *)-filter on X.

3. $(L, *, \odot)$ -Quasiuniform Convergence Spaces

Theorem 3.1. Let $\mathcal{U}, \mathcal{V} \in F_*(X \times X)$. We define $\mathcal{U} \circ_{\odot} \mathcal{V} : L^{X \times X} \to L$ as follows:

$$(\mathcal{U} \circ_{\odot} \mathcal{V})(w) = \bigvee \{\mathcal{U}(u) \odot \mathcal{V}(v) \mid u \circ v \le w\}$$

where $u \circ v(x, z) = \bigvee_{y \in X} (u(x, y) * v(y, z)).$

(1) $u \circ v = \bot$ implies $\mathcal{U}(u) \odot \mathcal{V}(v) = \bot$ iff $(\mathcal{U} \circ_{\odot} \mathcal{V}) \in F_*(X \times X)$.

(2) If $u \circ v = \bot$ implies $\mathcal{U}(u) \odot \mathcal{V}(v) = \bot$ and $\mathcal{U} \in F_*^s(X \times X)$ or $\mathcal{V} \in F_*^s(X \times X)$, then $\mathcal{U} \circ_{\odot} \mathcal{V} \in F_*^s(X \times X)$.

(3) If $\mathcal{U}(1_{\triangle}) = \top$ where $1_{\triangle}(x, x) = \top$ and $1_{\triangle}(x, y) = \bot$ for $x \neq y \in X$, $\mathcal{U} \circ \mathcal{U} \geq \mathcal{U}$. (4) $\mathcal{U} \circ_{\bigcirc} [(x, x)] \in F_{*}^{s}(X \times X)$, $\mathcal{U} \circ_{\bigcirc} [(x, x)] \geq \mathcal{U}$. (5) $[(x, x)] \circ_{*} [(x, x)] = [(x, x)]$. (6) $\bigwedge_{x \in X} [(x, x)] \circ_{*} \bigwedge_{x \in X} [(x, x)] = \bigwedge_{x \in X} [(x, x)]$. (7) $\mathcal{U} \circ_{*} \mathcal{U}^{-1} \in F_{*}(X \times X)$. (8) $(\mathcal{U} \circ_{\bigcirc} \mathcal{V})^{-1} = \mathcal{V}^{-1} \circ_{\bigcirc} \mathcal{U}^{-1}$.

Proof. (1) Since $(u_1 * u_2) \circ (v_1 * v_2) \le (u_1 \circ v_1) * (u_2 \circ v_2)$,

$$\begin{aligned} & (\mathcal{U} \circ_{\odot} \mathcal{V})(u) * (\mathcal{U} \circ_{\odot} \mathcal{V})(v) \\ &= \bigvee_{u_1 \circ v_1 \leq u} (\mathcal{U}(u_1) \odot \mathcal{V}(v_1)) * \bigvee_{u_2 \circ v_2 \leq v} (\mathcal{U}(u_2) \odot \mathcal{V}(v_2)) \\ &\leq \bigvee_{(u_1 \circ v_1) * (u_2 \circ v_2) \leq u * v} \left((\mathcal{U}(u_1) \odot \mathcal{V}(v_1)) * (\mathcal{U}(u_2) \odot \mathcal{V}(v_2)) \right) \\ &\leq \bigvee_{(u_1 \circ v_1) * (u_2 \circ v_2) \leq u * v} \left((\mathcal{U}(u_1) * \mathcal{U}(u_2)) \odot (\mathcal{V}(v_1) * \mathcal{V}(v_2)) \right) \\ &\leq \bigvee_{(u_1 * u_2) \circ (v_1 * v_2) \leq u * v} (\mathcal{U}(u_1 * u_2) \odot \mathcal{V}(v_1 * v_2)) \\ &\leq (\mathcal{U} \circ_{\odot} \mathcal{V})(u * v). \end{aligned}$$

Other cases are easily proved.

(2) Let $\mathcal{U} \in F_*^s(X \times X)$. Since $a * (b \odot c) \le (a \odot \top) * (b \odot c) \le (a * b) \odot (\top * c) = (a * b) \odot c$, we have

$$\begin{array}{ll} \alpha * (\mathcal{U} \circ_{\odot} \mathcal{V})(u) &= \alpha * \bigvee_{u_{1} \circ v_{1} \leq u} (\mathcal{U}(u_{1}) \odot \mathcal{V}(v_{1})) \\ &= \bigvee_{u_{1} \circ v_{1} \leq u} (\alpha * (\mathcal{U}(u_{1}) \odot \mathcal{V}(v_{1}))) \\ &\leq \bigvee_{(u_{1} \circ v_{1}) \leq u} ((\alpha * \mathcal{U}(u_{1})) \odot \mathcal{V}(v_{1})) \\ &\leq \bigvee_{((\alpha * u_{1}) \circ v_{1}) \leq \alpha * u} (\mathcal{U}(\alpha * u_{1}) \odot \mathcal{V}(v_{1})) \\ &\leq (\mathcal{U} \circ_{\odot} \mathcal{V})(\alpha * u) \end{array}$$

(3) For $u \circ 1_{\bigtriangleup} = u$, $\mathcal{U} \circ_{\odot} \mathcal{U}(u) \ge \mathcal{U}(u) \odot \mathcal{U}(1_{\bigtriangleup}) = \mathcal{U}(u)$.

(4) Since $[(x, x)](\alpha * u) = \alpha * u(x, x) = \alpha * [(x, x)](u), [(x, x)] \in F^s_*(X \times X)$. For $u \circ 1_{\triangle} = u$, we have

$$(\mathcal{U} \circ_{\odot} [(x,x)])(u) \ge \mathcal{U}(u) \odot [(x,x)](1_{\bigtriangleup}) = \mathcal{U}(u).$$

(5) For $u_1 \circ u_2 \leq u$, we have

$$([(x,x)] \circ_* [(x,x)])(u) = \bigvee_{x \in X} ([(x,x)](u_1) * [(x,x)](u_2)) \le u(x,x) = [(x,x)](u).$$

(6) For $u \circ 1_{\triangle} = u$, we have

$$(\bigwedge_{x \in X} [(x, x)] \circ_* \bigwedge_{x \in X} [(x, x)])(u) \ge \bigwedge_{x \in X} [(x, x)](u) * [(x, x)](1_{\triangle})$$

=
$$\bigwedge_{x \in X} [(x, x)](u).$$

For $u \circ v \leq w$,

$$(\bigwedge_{x \in X} [(x, x)](u)) * (\bigwedge_{x \in X} [(x, x)](v)) = \bigwedge_{x \in X} u(x, x) * \bigwedge_{x \in X} v(x, x)$$

$$\leq \bigwedge_{x \in X} [(x, x)](u \circ v) \leq \bigwedge_{x \in X} [(x, x)](w).$$

(7) For $u \circ v = \bot$, we have $\mathcal{U}(u) * \mathcal{U}^{-1}(v) \le \mathcal{U}(u * v^{-1}) = \bot$ because $u * v^{-1}(x, y) \le u \circ v(x, x) = \bot$.

(8) Since $(v \circ u)^{-1} = u^{-1} \circ v^{-1}$, we have

$$\begin{aligned} \mathcal{V}^{-1} \circ_{\odot} \mathcal{U}^{-1}(w) &= \bigvee \{ \mathcal{V}^{-1}(v) \odot \mathcal{U}^{-1}(u) \mid v \circ u \leq w \} \\ &= \bigvee \{ \mathcal{V}(v^{-1}) \odot \mathcal{U}(u^{-1}) \mid u^{-1} \circ v^{-1} \leq w^{-1} \} \\ &= \mathcal{U} \circ_{\odot} \mathcal{V}(w^{-1}) = (\mathcal{U} \circ_{\odot} \mathcal{V})^{-1}(w). \end{aligned}$$

Definition 3.2. A subset \mathcal{U} of $F_*(X \times X)$ is called an $(L, *, \odot)$ -quasiuniform structure on X if it satisfies the following conditions:

(QU1) $\mathcal{U} \leq [(x, x)]$, for each $x \in X$.

(QU2) $\mathcal{U} \leq \mathcal{U} \circ_{\odot} \mathcal{U}$.

The pair (X, \mathcal{U}) is called an $(L, *, \odot)$ quasiuniform space.

An $(L, *, \odot)$ -quasiuniform space is called an $(L, *, \odot)$ -uniform space if it satisfies the following condition;

(U) $\mathcal{U} \leq \mathcal{U}^{-1}$.

Let (X, \mathcal{U}_X) and (Y, \mathcal{U}_Y) be $(L, *, \odot)$ -quasiuniform spaces. A map $\psi : (X, \mathcal{U}_X) \to (Y, \mathcal{U}_Y)$ is called *quasiuniformly continuous* if for all $u \in L^{Y \times Y}$, $\mathcal{U}_Y(u) \leq \mathcal{U}_Y((\psi \times \psi)^{\leftarrow}(u))$.

Example 3.3. Let $X = \{a, b, c\}$ be a set and $(L = [0, 1], \leq, \land, *, 0, 1)$ an M-eclpremonoid with $a * b = (a + b - 1) \lor 0$. Put $u, v \in [0, 1]^{X \times X}$ as follows:

$$u(a, a) = u(b, b) = u(c, c) = 1, \ u(a, b) = u(b, a) = 0.6,$$

Jung Mi Ko & Yong Chan Kim

$$u(a,c) = u(c,a) = 0.5, u(b,c) = u(c,b) = 0.4.$$
$$v(a,a) = v(b,b) = 1, v(c,c) = 0.4, \quad v(a,b) = v(b,a) = 0.6,$$
$$v(a,c) = v(c,a) = 0.5, v(b,c) = v(c,b) = 0.4.$$

(1) Define a ([0,1],*)-filter as $\mathcal{U}: [0,1]^{X \times X} \to [0,1]$ as follows:

$$\mathcal{U}(w) = \begin{cases} 1, & \text{if } w = 1_{X \times X}, \\ 0.6, & \text{if } u \le w \ne 1_{X \times X}, \\ 0.3, & \text{if } u * u \le w \ge u, \\ 0, & \text{otherwise.} \end{cases}$$

Since $u \circ u = u$, we obtain $\mathcal{U} = \mathcal{U} \circ_{\wedge} \mathcal{U} = \mathcal{U}^{-1}$ and

$$(\mathcal{U} \circ_* \mathcal{U})(w) = \begin{cases} 1, & \text{if } w = 1_{X \times X}, \\ 0.2, & \text{if } u \le w \ne 1_{X \times X}, \\ 0, & \text{otherwise.} \end{cases}$$

Furthermore, $\mathcal{U}(w) \leq [(x,x)](w)$, for each $x \in X$, $w \in L^{X \times X}$. Hence \mathcal{U} is an $(L, *, \wedge)$ -uniform structure on X but not an (L, *, *)-uniform structure on X because $0.6 = \mathcal{U}(u) \nleq (\mathcal{U} \circ_* \mathcal{U})(u) = 0.2$.

(2) Define [0,1]-filter as $\mathcal{V}: [0,1]^{X \times X} \to [0,1]$ as follows:

$$\mathcal{V}(w) = \begin{cases} 1, & \text{if } w \ge 1_{\triangle}, \\ 0.6, & \text{if } v \le w \not\ge 1_{\triangle}, \\ 0.3, & \text{if } v * v \le w \not\ge v, \\ 0, & \text{otherwise.} \end{cases}$$

Since $v \circ 1_{\triangle} = v$, we obtain $\mathcal{V} \circ_* \mathcal{V} = \mathcal{V} \circ_{\wedge} \mathcal{V} = \mathcal{V} = \mathcal{V}^{-1}$. But $0.6 = \mathcal{V}(v) \not\leq [(c,c)](v) = 0.4$. Hence \mathcal{V} is neither an $(L,*,\wedge)$ -uniform structure nor an (L,*,*)-uniform structure on X.

Definition 3.4. A map $\Lambda : F_*(X \times X) \to L$ is called an $(L, *, \odot)$ -quasiuniform convergence structure on X if it satisfies the following conditions:

(QC1) $\Lambda([(x, x)]) = \top$, for each $x \in X$.

(QC2) If $\mathcal{U} \leq \mathcal{V}$, then $\Lambda(\mathcal{U}) \leq \Lambda(\mathcal{V})$.

(QC3) $\Lambda(\mathcal{U}) \odot \Lambda(\mathcal{V}) \leq \Lambda(\mathcal{U} \odot \mathcal{V}).$

(QC4) $\Lambda(\mathcal{U}) \odot \Lambda(\mathcal{V}) \leq \Lambda(\mathcal{U} \circ_{\odot} \mathcal{V})$ where $\mathcal{U} \circ_{\odot} \mathcal{V} \in F_*(X \times X)$.

The pair (X, Λ) is called an $(L, *, \odot)$ -quasiuniform convergence space.

An $(L, *, \odot)$ -quasiuniform convergence space is called an $(L, *, \odot)$ -uniform convergence space if it satisfies the following condition;

(U) $\Lambda(\mathcal{U}) \leq \Lambda(\mathcal{U}^{-1}).$

We say Λ_1 is finer than Λ_2 (or Λ_2 is coarser than Λ_1) iff $\Lambda_1 \leq \Lambda_2$. We define $\Lambda_{\top}, \Lambda_{\perp} : F_*(X \times X) \to [0, 1]$ as follows:

$$\Lambda_{\top}(\mathcal{W}) = \begin{cases} \top, & \text{if } \mathcal{W} \ge [(x, x)], \forall x \in X \\ \bot, & \text{otherwise.} \end{cases} \quad \Lambda_{\bot}(\mathcal{W}) = \top, \forall \mathcal{W} \in F(X \times X)$$

Then Λ_{\top} (resp. Λ_{\perp}) is the finest (resp. coarsest) $(L, *, \odot)$ -quasiuniform convergence structure.

Let (X, Λ_X) and (Y, Λ_Y) be $(L, *, \odot)$ -quasiuniform convergence spaces. A map $\psi : (X, \Lambda_X) \to (Y, \Lambda_Y)$ is called *quasiuniformly continuous* if for all $\mathcal{U} \in F_*(X \times X)$, $\Lambda_X(\mathcal{U}) \leq \Lambda_Y((\psi \times \psi)^{\Rightarrow}(\mathcal{U})).$

Theorem 3.5. Let (X, Λ_X) be an $(L, *, \odot)$ -quasiuniform convergence space. We define a map $\Lambda_X^{-1} : F_*(X \times X) \to L$ as

$$\Lambda_X^{-1}(\mathcal{U}) = \Lambda_X(\mathcal{U}^{-1})$$

Then

(1) (X, Λ_X^{-1}) is an $(L, *, \odot)$ -quasiuniform convergence space.

(2) If $\psi : (X, \Lambda_X) \to (Y, \Lambda_Y)$ is quasiuniformly continuous, then $\psi : (X, \Lambda_X^{-1}) \to (Y, \Lambda_X^{-1})$ is quasiuniformly continuous.

Proof. (1) (QC1) It is easy because $[(x, x)]^{-1} = [(x, x)]$. (QC2) If $\mathcal{U} \leq \mathcal{V}$, then $\mathcal{U}^{-1} \leq \mathcal{V}^{-1}$. Thus $\Lambda_X^{-1}(\mathcal{U}) = \Lambda_X(\mathcal{U}^{-1}) \leq \Lambda_X(\mathcal{V}^{-1}) = \Lambda_X^{-1}(\mathcal{V})$. (QC3) $\Lambda_X^{-1}(\mathcal{U}) \odot \Lambda_X^{-1}(\mathcal{V}) = \Lambda_X(\mathcal{U}^{-1}) \odot \Lambda_X(\mathcal{V}^{-1}) \leq \Lambda_X(\mathcal{U}^{-1} \odot \mathcal{V}^{-1}) = \Lambda_X^{-1}(\mathcal{U} \odot \mathcal{V})$. (QC4) $\Lambda_X^{-1}(\mathcal{U}) \odot \Lambda_X^{-1}(\mathcal{V}) = \Lambda_X^{-1}(\mathcal{V}) \odot \Lambda_X^{-1}(\mathcal{U}) = \Lambda_X(\mathcal{V}^{-1}) \odot \Lambda_X(\mathcal{U}^{-1})$

$$\begin{split} \Lambda_X(\mathcal{U}) & \oplus \Lambda_X(\mathcal{V}) &= \Lambda_X(\mathcal{V}) \oplus \Lambda_X(\mathcal{U}) = \Lambda_X(\mathcal{V} - 1) \oplus \Lambda_X(\mathcal{U}) \\ & \leq \Lambda_X(\mathcal{V}^{-1} \circ_{\odot} \mathcal{U}^{-1}) = \Lambda_X((\mathcal{U} \circ_{\odot} \mathcal{V})^{-1}) \\ & = \Lambda_X^{-1}(\mathcal{U} \circ_{\odot} \mathcal{V}). \end{split}$$

(2) $\Lambda_X^{-1}(\mathcal{U}) = \Lambda_X(\mathcal{U}^{-1}) \leq \Lambda_Y((\psi \times \psi)^{\Rightarrow}(\mathcal{U}^{-1})) = \Lambda_Y(((\psi \times \psi)^{\Rightarrow}(\mathcal{U}))^{-1}) = \Lambda_Y^{-1}((\psi \times \psi)^{\Rightarrow}(\mathcal{U})).$

Example 3.6. Let $X = \{a, b, c\}$ be a set, $(L = [0, 1], \leq, \odot, *, 0, 1)$ an ecl-premonoid with $a * b = a \cdot b$, $a \odot b = a^{\frac{1}{3}} \cdot b^{\frac{1}{3}}$ and $u \in [0, 1]^{X \times X}$ defined as follows:

$$u(a, a) = u(b, b) = u(c, c) = 1, \ u(a, b) = 0.5, u(b, a) = 0.6,$$

 $u(a, c) = u(c, a) = 0.5, u(b, c) = 0.6, u(c, b) = 0.4.$

Define [0, 1]-filter as $\mathcal{U} : [0, 1]^{X \times X} \to [0, 1]$ as follows:

$$\mathcal{U}(w) = \begin{cases} 1, & \text{if } w = 1_{X \times X}, \\ 0.6^n, & \text{if } u^n \le w \ngeq u^{n-1}, n \in N, \\ 0, & \text{otherwise.} \end{cases}$$

where $u^{n+1} = u^n * u$ and $u^0 = 1_{X \times X}$.

Since $u^n \circ u^n = u^n$, we obtain

$$(\mathcal{U} \circ_{\odot} \mathcal{U})(w) = \begin{cases} 1, & \text{if } w = 1_{X \times X}, \\ 0.6^n \odot 0.6^n, & \text{if } u^n \leq w \not\geq u^{n-1}, n \in N, , \\ 0, & \text{otherwise.} \end{cases}$$
$$(\mathcal{U} \odot \mathcal{U})(w) = \begin{cases} 1, & \text{if } w = 1_{X \times X}, \\ 0.6^n \odot 0.6^n, & \text{if } u^n \leq w \not\geq u^{n-1}, n \in N, \\ 0, & \text{otherwise.} \end{cases}$$

We define $\Lambda: F_*(X \times X) \to [0, 1]$ as follows:

$$\Lambda(\mathcal{W}) = \begin{cases} 1, & \text{if } \mathcal{W} \ge [(x, x)], x \in X\\ 0.5^{[n]}, & \text{if } \mathcal{U}^{[n]} \le \mathcal{W} \not\ge \mathcal{U}^{[n+1]}, n \in N\\ 0, & \text{otherwise.} \end{cases}$$

where $\mathcal{U}^{[n+1]} = \mathcal{U}^{[n]} \odot \mathcal{U}$ and $0.5^{[n+1]} = 0.5^{[n]} \odot 0.5$.

Then Λ is an $(L, *, \odot)$ -quasiuniform convergence structure on X. We obtain $\Lambda^{-1} : F(X \times X) \to [0, 1]$ as follows:

$$\Lambda^{-1}(\mathcal{W}) = \begin{cases} 1, & \text{if } \mathcal{W} \ge [(x, x)], x \in X\\ 0.5^{[n+1]}, & \text{if } \mathcal{V}^{[n]} \le \mathcal{W} \not\ge \mathcal{V}^{[n+1]},\\ 0, & \text{otherwise.} \end{cases}$$

where $\mathcal{V} = \mathcal{U}^{-1}$, $\mathcal{V}^{[n+1]} = \mathcal{V}^{[n]} \odot \mathcal{V}$ and $0.5^{[n+1]} = 0.5^{[n]} \odot 0.5$. Then Λ^{-1} is an $(L, *, \odot)$ -quasiuniform convergence structure on X.

Example 3.7. Let $X = \{a, b, c\}$, ([0, 1], *), $u \in [0, 1]^{X \times X}$ and \mathcal{U} as defined in Example 12. We define $\Lambda : F_*(X \times X) \to [0, 1]$ as follows:

$$\Lambda(\mathcal{W}) = \begin{cases} 1, & \text{if } \mathcal{W} \ge [(x, x)], \\ 0.6, & \text{if } \mathcal{U} \le \mathcal{W} \not\ge [(x, x)], \\ 0, & \text{otherwise.} \end{cases}$$

Since $\mathcal{U} \circ_{\wedge} \mathcal{U} = \mathcal{U} \wedge \mathcal{U} = \mathcal{U} = \mathcal{U}^{-1}$, Λ is an $(L, *, \wedge)$ -uniform convergence structure.

Theorem 3.8. Let $(L, \leq, \odot, *)$ be an M-ecl-premonoid. Let \mathcal{U} be a quasiuniform structure on X. We define a map $\Lambda^{\mathcal{U}} : F(X \times X) \to L$ as follows:

$$\Lambda^{\mathcal{U}}(\mathcal{W}) = \bigwedge_{u \in L^X \times X} (\mathcal{U}(u) \to \mathcal{W}(u)).$$

Then

(1) $\Lambda^{\mathcal{U}}$ is an $(L, *, \odot)$ quasiuniform convergence structure.

(2) If $\psi : (X, \mathcal{U}_X) \to (Y, \mathcal{U}_Y)$ is quasiuniformly continuous, then $\psi : (X, \Lambda_X^{\mathcal{U}}) \to (Y, \Lambda_Y^{\mathcal{U}})$ is quasiuniformly continuous.

Proof. (QC1) Since $\mathcal{U} \leq [(x, x)]$,

$$\Lambda^{\mathcal{U}}([(x,x)]) = \bigwedge_{u \in L^{X \times X}} (\mathcal{U}(u) \to [(x,x)](u)) = \top.$$

(QC3)

$$\begin{split} \Lambda^{\mathcal{U}}(\mathcal{W}_{1}) \odot \Lambda^{\mathcal{U}}(\mathcal{W}_{2}) \\ &= \left(\bigwedge_{u \in L^{X \times X}} (\mathcal{U}(u) \to \mathcal{W}_{1}(u)) \right) \odot \left(\bigwedge_{v \in L^{X \times X}} (\mathcal{U}(v) \to \mathcal{W}_{2}(v)) \right) \\ &\leq \bigwedge_{u \in L^{X \times X}} \left((\mathcal{U}(u) \to \mathcal{W}_{1}(u)) \odot (\mathcal{U}(u) \to \mathcal{W}_{2}(u)) \right) \\ &\leq \bigwedge_{u \in L^{X \times X}} \left((\mathcal{U}(u) \odot \mathcal{U}(u)) \to (\mathcal{W}_{1}(u) \odot \mathcal{W}_{2}(u)) \right) \\ &\leq \bigwedge_{u \in L^{X \times X}} \left(\mathcal{U}(u) \to (\mathcal{W}_{1} \odot \mathcal{W}_{2})(u) \right) \\ &= \Lambda^{\mathcal{U}}(\mathcal{W}_{1} \odot \mathcal{W}_{2}). \end{split}$$

(QC4)

$$\begin{split} &\Lambda^{\mathcal{U}}(\mathcal{V}\circ_{\odot}\mathcal{W}) \\ &= \bigwedge_{u\in L^{X\times X}} \left(\mathcal{U}(u) \to (\mathcal{V}\circ_{\odot}\mathcal{W})(u) \right) \\ &\geq \bigwedge_{u\in L^{X\times X}} \left((\mathcal{U})\circ_{\odot}\mathcal{U})(u) \to (\mathcal{V}\circ_{\odot}\mathcal{W})(u) \right) \\ &\geq \bigwedge_{u\in L^{X\times X}} \left(\bigvee_{u_{1}\circ u_{2}\leq u} (\mathcal{U}(u_{1})\odot\mathcal{U}(u_{2})) \to (\mathcal{V}\circ_{\odot}\mathcal{W})(u)) \right) \\ &= \bigwedge_{u\in L^{X\times X}} \bigwedge_{u_{1}\circ u_{2}\leq u} \left(\mathcal{U}(u_{1})\odot\mathcal{U}(u_{2}) \to (\mathcal{V}\circ_{\odot}\mathcal{W})(u) \right) \\ &\geq \bigwedge_{u\in L^{X\times X}} \bigwedge_{u_{1}\circ u_{2}\leq u} \left((\mathcal{U}(u_{1})\odot\mathcal{U}(u_{2})) \to (\mathcal{V}(u_{1})\odot\mathcal{W}(u_{2})) \right) \\ &\geq \bigwedge_{u_{1}\in L^{X\times X}} \bigwedge_{u_{2}\in L^{X\times X}} \left((\mathcal{U}(u_{1})\to\mathcal{V}(u_{1}))\odot(\mathcal{U}(u_{2})\to\mathcal{W}(u_{2})) \right) \\ &\geq \left(\bigwedge_{u_{1}\in L^{X\times X}} (\mathcal{U}(u_{1})\to\mathcal{V}(u_{1})) \right) \odot \left(\bigwedge_{u_{2}\in L^{X\times X}} (\mathcal{U}(u_{2})\to\mathcal{W}(u_{2})) \right) \\ &= \bigwedge^{\mathcal{U}}(\mathcal{V})\odot\Lambda^{\mathcal{U}}(\mathcal{W}). \end{split}$$

$$\begin{aligned}
\Lambda_X^{\mathcal{U}_X}(\mathcal{W}) &\to \Lambda_Y^{\mathcal{U}_Y}((\psi \times \psi)^{\Rightarrow}(\mathcal{W})) \\
&\geq \left(\bigwedge_{u \in L^X \times X} (\mathcal{U}_X(u) \to \mathcal{W}(u)) \right) \\
&\to \left(\bigwedge_{v \in L^Y \times Y} (\mathcal{U}_Y(v) \to (\psi \times \psi)^{\Rightarrow}(\mathcal{W})(v)) \right) \\
&\geq \left(\bigwedge_{v \in L^Y \times Y} (\mathcal{U}_X((\psi \times \psi)^{\leftarrow}(v)) \to \mathcal{W}((\psi \times \psi)^{\leftarrow}(v))) \right) \to \\
&\left(\bigwedge_{v \in L^Y \times Y} (\mathcal{U}_Y(v) \to (\psi \times \psi)^{\Rightarrow}(\mathcal{W})(v)) \right)
\end{aligned}$$

Jung Mi Ko & Yong Chan Kim

$$\geq \bigwedge_{v \in L^{Y \times Y}} \left(\mathcal{U}_X((\psi \times \psi)^{\leftarrow}(v)) \to \mathcal{U}((\psi \times \psi)^{\leftarrow}(v))) \to \mathcal{U}((\psi \times \psi)^{\leftarrow}(v))) \right)$$

$$\geq \bigwedge_{v \in L^{Y \times Y}} \left(\mathcal{U}_Y(v) \to \mathcal{U}_X((\psi \times \psi)^{\leftarrow}(v))) \right).$$

Example 3.9. Let $X = \{a, b, c\}$, ([0, 1], *), $u \in [0, 1]^{X \times X}$ and \mathcal{U} as defined in Example 12. Since (X, \mathcal{U}) is an $(L, *, \wedge)$ is uniform structure and $(L, \leq, \wedge, *)$ is an M-ecl-premonoid, we obtain an $(L, *, \wedge)$ -quasiuniform convergence structure $\Lambda^{\mathcal{U}}$: $F_*(X \times X) \to [0, 1]$ as follows:

$$\Lambda^{\mathcal{U}}(\mathcal{W}) = \bigwedge_{v \in L^{X \times X}} (\mathcal{U}(v) \to \mathcal{W}(v)) = (0.6 \to \mathcal{W}(u)) \land (0.3 \to \mathcal{W}(u * u))$$

where $(a \rightarrow b) = 1$ if $a \leq b$ and $(a \rightarrow b) = b$, otherwise.

References

- R. Bělohlávek: Fuzzy Relational Systems. Kluwer Academic Publishers, New York, 2002.
- W. G\u00e4hler: The general fuzzy filter approach to fuzzy topology I. Fuzzy Sets and Systems 76 (1995), 205-224.
- 3. _____: The general fuzzy filter approach to fuzzy topology II. Fuzzy Sets and Systems **76** (1995), 225-246.
- U. Höhle & A.P. Sostak: Axiomatic foundation of fixed-basis fuzzy topology, Chapter 3 in Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, Handbook of fuzzy set series. Kluwer Academic Publisher, Dordrecht, 1999.
- G. Jäger: Subcategories of lattice-valued convergence spaces. Fuzzy Sets and Systems 156 (2005), 1-24.
- Pretopological and topological lattice-valued convergence spaces. Fuzzy Sets and Systems 158(2007), 424-435.
- Jinming Fang: Stratified L-order convergence structures. Fuzzy Sets and Systems 161 (2010), 2130-2149.
- Lattice-valued semiuniform convergence spaces. Fuzzy Sets and Systems 195 (2012), 33-57.
- 9. _____: Stratified L-order quasiuniform limit spaces. Fuzzy Sets and Systems 227 (2013), 51-73.
- <u>_____</u>: Lattice-valued preuniform convergence spaces. Fuzzy Sets and Systems 251 (2014), 52-70.
- 11. _____: Relationships between L-ordered convergence structures and strong L-tologies. Fuzzy Sets and Systems **161** (2010), 2923-2944.

- Y.C. Kim & J.M. Ko: Images and preimages of L-filter bases. Fuzzy Sets and Systems 173 (2005), 93-113.
- D. Orpen & G. Jäger: Lattice-valued convergence spaces. Fuzzy Sets and Systems 190 (2012), 1-20.
- W. Yao: On many-valued L-fuzzy convergence spaces. Fuzzy Sets and Systems 159 (2008), 2503-2519.

^aDepartment of Mathematics, Gangneung-Wonju National Gangneung 25457, Korea *Email address*: jmko@gwnu.ac.kr

^bDEPARTMENT OF MATHEMATICS, GANGNEUNG-WONJU NATIONAL GANGNEUNG 25457, KOREA Email address: yck@gwnu.ac.kr