# ON THE HYERS-ULAM-RASSIAS STABILITY OF AN ADDITIVE-CUBIC-QUARTIC FUNCTIONAL EQUATION 

Yang-Hi Lee

Abstract. In this paper, we investigate Hyers-Ulam-Rassias stability of the functional equation

$$
\begin{aligned}
f(x+k y) & -k^{2} f(x+y)+2\left(k^{2}-1\right) f(x)-k^{2} f(x-y)+f(x-k y) \\
& -k^{2}\left(k^{2}-1\right)(f(y)+f(-y))=0,
\end{aligned}
$$

where $k$ is a fixed real number with $|k| \neq 0,1$.

## 1. Introduction

Throughout this paper, let $V$ and $W$ be real vector spaces and $k$ a fixed real number such that $|k| \neq 0,1$. For a given mapping $f: V \rightarrow W$, we use the following abbreviations:

$$
\begin{aligned}
f_{o}(x) & :=\frac{f(x)-f(-x)}{2}, \\
f_{e}(x) & :=\frac{f(x)+f(-x)}{2}, \\
A f(x, y) & :=f(x+y)-f(x)-f(y), \\
C f(x, y) & :=f(x+2 y)-3 f(x+y)+3 f(x)-f(x-y)-6 f(y), \\
Q^{\prime} f(x, y) & :=f(x+2 y)-4 f(x+y)+6 f(x)-4 f(x-y)+f(x-2 y)-24 f(y), \\
D_{k} f(x, y) & :=f(x+k y)-k^{2} f(x+y)+2\left(k^{2}-1\right) f(x)-k^{2} f(x-y)+f(x-k y)
\end{aligned}
$$

$$
\begin{equation*}
-k^{2}\left(k^{2}-1\right)(f(y)+f(-y)) \tag{1.1}
\end{equation*}
$$

for all $x, y \in V$. Every solution of functional equation $A f(x, y)=0, C f(x, y)=0$ and $Q^{\prime} f(x, y)=0$ are called an additive mapping, a cubic mapping and a quartic mapping, respectively. If a mapping can be expressed by the sum of an additive mapping, a cubic mapping and a quartic mapping, then we call the mapping

[^0]an additive-cubic-quartic mapping. A functional equation is called an additive-cubic-quartic functional equation provided that each solution of that equation is an additive-cubic-quartic mapping and every additive-cubic-quartic mapping is a solution of that equation. Many mathematicians $[2,5,7,9,11]$ have studied the stability of the following additive-cubic-quartic functional equation
$$
11 f(x+2 y)+11 f(x-2 y)=44 f(x+y)+44 f(x-y)+12 f(3 y)-48 f(2 y)+60 f(y)-66 f(x) .
$$

In 1940, Ulam [10] questioned about the stability of group homomorphisms. In 1941, Hyers [6] solved this question for Cauchy functional equation, which is a partial answer to Ulam's question. In 1978, Rassias [8] made Hyers' result generalized (Refer to Găvruta's paper [3] for a more generalized result). The concept of stability used by Rassias is called 'Hyers-Ulam-Rassias stability'.
M.E. Gordji etc. [4] investigated the stability of the functional equation $D_{k} f(x, y)$ $=0$ on the random normed spaces for the case $k$ is a fixed integer.

In this paper, we will show that the functional equation $D_{r} f(x, y)=0$ is an additive-cubic-quartic functional equation when $r$ is a rational number, and also investigate Hyers-Ulam-Rassias stability of that functional equation $D_{k} f(x, y)=0$ for $k$ is a real number.

## 2. Main Theorems

The following theorem is a particular case of Baker's theorem [1].
Theorem 2.1 ( $[1$, Theorem 1]). Suppose that $V$ and $W$ are vector spaces over $\mathbb{Q}, \mathbb{R}$ or $\mathbb{C}$ and $\alpha_{0}, \beta_{0}, \ldots, \alpha_{m}, \beta_{m}$ are scalars such that $\alpha_{j} \beta_{l}-\alpha_{l} \beta_{j} \neq 0$ whenever $0 \leq j<l \leq m$. If $f_{l}: V \rightarrow W$ for $0 \leq l \leq m$ and

$$
\sum_{l=0}^{m} f_{l}\left(\alpha_{l} x+\beta_{l} y\right)=0
$$

for all $x, y \in V$, then each $f_{l}$ is a "generalized" polynomial mapping of "degree" at most $m-1$.

Baker [1] also states that if $f$ is a "generalized" polynomial mapping of "degree" at most $m-1$, then $f$ is expressed as $f(x)=x_{0}+\sum_{l=1}^{m-1} a_{l}^{*}(x)$ for $x \in V$, where $a_{l}^{*}$ is a monomial mapping of degree $l$ and $f$ has a property $f(r x)=x_{0}+\sum_{l=1}^{m-1} r^{l} a_{l}^{*}(x)$ for $x \in V$ and $r \in \mathbb{Q}$. The monomial mapping of degree $1,2,3$ and 4 are also called
an additive mapping, a quadric mapping, a cubic mapping and a quartic mapping, respectively.

Therefore, if $f, g, h, f^{\prime}$ are generalized polynomial mappings of degree at most 4 satisfying $f(r x)=r f(x), g(r x)=r^{2} g(x), h(r x)=r^{3} h(x)$ and $f^{\prime}(r x)=r^{4} f^{\prime}(x)$ for all $x \in V$ when $r$ is a fixed rational number with $r \neq 0, \pm 1$, then $f, g, h, f^{\prime}$ are an additive mapping, a quadratic mapping, a cubic mapping and a quartic mapping, respectively.

Hereafter we will use the following abbreviation for convenience:

$$
\begin{aligned}
\Lambda f(x):= & \frac{1}{k^{4}-k^{2}}\left(\left(4 k^{2}-3\right) D_{k} f_{o}(x, x)-2 k^{2} D_{k} f_{o}(2 x, x)+2 k^{2} D_{k} f_{o}(x, 2 x)\right. \\
& -2 D_{k} f_{o}((k+1) x, x)+2 D_{k} f_{o}((k-1) x, x)-k^{2} D_{k} f_{o}(2 x, 2 x) \\
& \left.+D_{k} f_{o}(x, 3 x)-D_{k} f_{o}((2 k+1) x, x)+D_{k} f_{o}((2 k-1) x, x)\right) .
\end{aligned}
$$

Now we will show that the functional equation $D_{r} f(x, y)=0$ is an additive-cubicquartic functional equation when $r$ is a rational number such that $r \neq 0, \pm 1$.

Theorem 2.2. Let $r$ be a rational number such that $r \neq 0, \pm 1$. A mapping $f$ satisfies the functional equation $D_{r} f(x, y)=0$ for all $x, y \in V$ if and only if $f$ is an additive-cubic-quartic mapping.

Proof. Assume that a mapping $f: V \rightarrow W$ satisfies the functional equation $D_{r} f(x, y)$ $=0$ for all $x, y \in V$ and $g, h$ are the mappings defined by $g(x)=\frac{-f_{o}(2 x)+8 f_{o}(x)}{6}$ and $h(x)=\frac{f_{o}(2 x)-2 f_{o}(x)}{6}$. Then $D_{r} g(x, y)=0, D_{r} h(x, y)=0$ and $D_{r} f_{e}(x, y)=0$ hold for all $x, y \in V$. According to Theorem 2.1, we obtain that $g, h$ and $f_{e}$ are generalized polynomial mappings of degree at most 4 . From the equalities

$$
\begin{equation*}
f_{o}(4 x)-10 f_{o}(2 x)+16 f_{o}(x)=\Lambda f(x) \text { and } f_{e}(r x)-r^{4} f_{e}(x)=\frac{D_{r} f(0, x)}{2} \tag{2.2}
\end{equation*}
$$

for all $x \in V$, where $\Lambda f(x)$ is the mapping defined in (2.1), we know that $g, h, f_{e}$ satisfy the properties $g(2 x)=2 g(x), h(2 x)=2^{3} h(x)$ and $f_{e}(r x)=r^{4} f_{e}(x)$ for all $x \in$ $V$, respectively. As mentioned in the previous sentence above this theorem, $g, h, f_{e}$ are an additive mapping, a cubic mapping, and a quartic mapping, respectively. Since the equality $f=g+h+f_{e}$ holds, $f$ is an additive-cubic-quartic mapping.

Conversely, assume that $f$ is an additive-cubic-quartic mapping, i.e. there exist an additive mapping $g$, a cubic mapping $h$, and a quartic mapping $f^{\prime}$ such that $f=$ $g+h+f^{\prime}$. Notice that the equalities $g(r x)=r g(x), g(x)=-g(-x), h(r x)=r^{3} h(x)$, $h(x)=-h(-x), f^{\prime}(r x)=r^{4} f^{\prime}(x)$ and $f^{\prime}(x)=f^{\prime}(-x)$ for all $x \in V$ and $r \in \mathbb{Q}$. First
$D_{r} g(x, y)=0$ is obtained from the equality

$$
D_{r} g(x, y)=r^{2} A g(x+y, x-y)-A g(x+r y, x-r y)-\left(r^{2}-1\right) A g(x, x)
$$

for all $x, y \in V$. Let us first prove $D_{n} h(x, y)=0$ and $D_{n} f^{\prime}(x, y)=0$ for $n$ is a natural number. Using mathematical induction, the equalities $D_{n} h(x, y)=0$ and $D_{n} f^{\prime}(x, y)=0$ are obtained from the equalities

$$
\begin{aligned}
& D_{1} h(x, y) \equiv 0 \equiv D_{1} f^{\prime}(x, y), \\
& D_{2} f^{\prime}(x, y)=Q^{\prime} f^{\prime}(x, y), \\
& D_{2} h(x, y)= \\
& \begin{aligned}
D_{n} f^{\prime}(x, y) & =D_{n-1} f^{\prime}(x, y)-C h(x-y, y), \\
& \quad+(n-1)^{2} Q^{\prime} f^{\prime}(x, y), \\
& \\
D_{n} h(x, y)= & D_{n-1} h(x+y, y)+D_{n-1} h(x-y, y)-D_{n-2} h(x, y)+(n-1)^{2} D_{2} h(x, y)
\end{aligned}
\end{aligned}
$$

for all $x, y \in V$ and all $n \in \mathbb{N} \backslash\{1,2\}$. Let us now prove $D_{r} f^{\prime}(x, y)=0$ and $D_{r} h(x, y)=0$ for any rational numbers $r$ with $r \neq 0, \pm 1$. Notice that if $r \in \mathbb{Q}$, then there exist $m, n \in \mathbb{N}$ such that $r=\frac{n}{m}$ or $r=\frac{-n}{m}$. Since the equalities $D \frac{n}{m} h(x, y)=0$, $D_{\frac{-n}{m}} h(x, y)=0, D_{\frac{n}{m}} f^{\prime}(x, y)=0$ and $D_{\frac{-n}{m}} f^{\prime}(x, y)=0$ are derived from the equalities

$$
\begin{aligned}
D_{\frac{n}{m}} h(x, y) & =D_{n} h\left(x, \frac{y}{m}\right)-\frac{n^{2}}{m^{2}} D_{m} h\left(x, \frac{y}{m}\right), \\
D_{\frac{-n}{m}}^{m} h(x, y) & =D_{\frac{n}{m}}^{m} h(x,-y), \\
D_{\frac{n}{m}} f^{\prime}(x, y) & =D_{n} f^{\prime}\left(x, \frac{y}{m}\right)-\frac{n^{2}}{m^{2}} D_{m} f^{\prime}\left(x, \frac{y}{m}\right), \\
D_{\frac{-n}{m}} f^{\prime}(x, y) & =D_{\frac{n}{m}} f^{\prime}(x,-y)
\end{aligned}
$$

for all $x, y \in V$ and $n, m \in \mathbb{N}$, we get $D_{r} h(x, y)=0$ and $D_{r} f^{\prime}(x, y)=0$ for all $x, y \in V$.

Now we can prove the following Hyers-Ulam-Rassias stability theorem.
Theorem 2.3. Let $p \neq 1,3,4$ be a positive real number, $X$ a real normed space, and $Y$ a real Banach space. Suppose that $f: X \rightarrow Y$ is a mapping such that

$$
\begin{equation*}
\left\|D_{k} f(x, y)\right\| \leq \theta\left(\|x\|^{p}+\|y\|^{p}\right) \tag{2.3}
\end{equation*}
$$

for all $x, y \in X$. Then there exists a unique solution mapping $F$ of the functional equation $D_{k} F(x, y)=0$ such that
for all $x \in X$, where

$$
K=\frac{12 k^{2}+13+5 k^{2} 2^{p}+3^{p}+2|k-1|^{p}+2|k+1|^{p}+|2 k-1|^{p}+|2 k+1|^{p}}{\left|k^{4}-k^{2}\right|} .
$$

Proof. Notice that $2 k^{2}\left(k^{2}-1\right)\|f(0)\|=\left\|D_{k} f(x, y)\right\| \leq 0$, which implies $f(0)=0$. we will prove this theorem by dividing it into two cases, $|k|<1$ and $1<|k|$.
Case 1: Assume that $1<|k|$. Let $J_{n} f: X \rightarrow Y$ be the mappings defined by
$J_{n} f(x)=\left\{\begin{array}{lr}k^{4 n} f_{e}\left(k^{-n} x\right)+\frac{4 \cdot 8^{n}-2^{n}}{3} f_{o}\left(\frac{x}{2^{n}}\right)-\frac{8^{n+1}-2^{n+3}}{3} f_{o}\left(\frac{x}{2^{n+1}}\right) & \text { if } 4<p, \\ \frac{f_{e}\left(k^{n} x\right)}{\left.k^{n} x\right)}+\frac{4 \cdot 8^{n}-2^{n}}{3} f_{o}\left(\frac{x}{2^{n}}\right)-\frac{8^{n+1}-2^{n+3}}{3} f_{o}\left(\frac{x}{2^{n+1}}\right) & \text { if } 3<p<4, \\ \frac{f_{e}\left(k^{n} x\right)}{k^{n}}-\frac{2^{n-1}}{3}\left(f_{o}\left(\frac{x}{2^{n-1}}\right)-8 f_{o}\left(\frac{x}{2^{n}}\right)\right)+\frac{f_{o}\left(2^{n+1} x\right)-2 f_{o}\left(2^{n} x\right)}{6 \cdot 8^{n}} & \text { if } 1<p<3, \\ \frac{f_{e}\left(k^{n} x\right)}{k^{4 n}}+\frac{8 f_{o}\left(2^{n} x\right)-f_{o}\left(2^{n+1} x\right)}{6 \cdot 2^{n}}+\frac{f_{o}\left(2^{n+1} x\right)-2 f_{o}\left(2^{n} x\right)}{6 \cdot 8^{n}} & \text { if } p<1\end{array}\right.$
for all $x \in X$ and all nonnegative integers $n$. Then, by (2.2) and the definitions of $J_{n} f$ and $\Lambda f$, we have the equality
$J_{n} f(x)-J_{n+1} f(x)= \begin{cases}\frac{k^{4 n}}{2} D_{k} f\left(0, \frac{x}{k^{n+1}}\right)+\frac{4 \cdot 8^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right)-\frac{2^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) & \text { if } 4<p, \\ -\frac{D_{k} f\left(0, k^{n} x\right)}{2 \cdot k^{2(n+1)}}+\frac{4 \cdot 8^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right)-\frac{2^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) \quad \text { if } 3<p<4, \\ -\frac{D_{k} f\left(0, k^{n} x\right)}{2 \cdot k^{4\left(k^{n}+1\right)}-\frac{1}{48 \cdot 8^{n}} \Lambda f\left(2^{n} x\right)-\frac{2^{n-1}}{3} \Lambda f\left(\frac{x}{2^{n+1}}\right)} \text { if } 1<p<3, \\ -\frac{D_{k} f\left(0, k^{n} x\right)}{2 \cdot k^{4(n+1)}}+\frac{1}{12 \cdot 2^{n}} \Lambda f\left(2^{n} x\right)-\frac{1}{48 \cdot 8^{n}} \Lambda f\left(2^{n} x\right) & \text { if } p<1\end{cases}$
holds for all $x \in X$ and all nonnegative integers $n$. Therefore, together with the equality $f(x)-J_{n} f(x)=\sum_{i=0}^{n-1}\left(J_{i} f(x)-J_{i+1} f(x)\right)$ for all $x \in X$, we obtain that if $f: X \rightarrow Y$ is a mapping such that $D_{k} f(x, y)=0$ for all $x, y \in X$, then

$$
\begin{equation*}
J_{n} f(x)=f(x) \tag{2.6}
\end{equation*}
$$

for all $x \in X$ and all positive integers $n$. The inequality

$$
\begin{equation*}
\|\Lambda f(x)\| \leq K \theta\|x\|^{p} \tag{2.7}
\end{equation*}
$$

follows from (2.3) and the definition of $\Lambda f$. It follows from (2.5) and (2.7) that

$$
\left\|J_{n} f(x)-J_{n+1} f(x)\right\| \leq \begin{cases}\left(\frac{k^{4 n}}{2 \cdot|k|^{n+1) p}}+\frac{\left(4 \cdot 8^{n}-2^{n}\right) K}{3 \cdot 2^{(n+2) p}}\right) \theta\|x\|^{p} & \text { if } 4<p, \\ \left(\frac{|k| n^{n p}}{2 \cdot k^{4(n+1)}}+\frac{\left(4 \cdot \cdot^{n}-2^{n}\right) K}{3 \cdot 2^{(n+2) p}}\right) \theta\|x\|^{p} & \text { if } 3<p<4, \\ \left(\frac{\mid k k^{n p}}{2 \cdot k^{(n+1)}}+\frac{K 2^{n p}}{68^{n+1}}+\frac{2^{n} K}{6 \cdot 2^{n+1) p}}\right) \theta\|x\|^{p} & \text { if } 1<p<3, \\ \left(\frac{\mid k k^{n p}}{2 \cdot k^{4(n+1)}}+\frac{\left(4^{n+1}-1\right) 2^{n p} K}{6 \cdot 8^{n+1}}\right) \theta\|x\|^{p} & \text { if } 0<p<1\end{cases}
$$

for all $x \in X$. Together with the equality $J_{n} f(x)-J_{n+m} f(x)=\sum_{i=n}^{n+m-1}\left(J_{i} f(x)\right.$ $\left.-J_{i+1} f(x)\right)$ for all $x \in X$, we get

$$
\left\|J_{n} f(x)-J_{n+m} f(x)\right\| \leq\left\{\begin{array}{l}
\sum_{i=n}^{n+m-1}\left(\frac{k^{4 i}}{2 \cdot|k|^{(i+1) p}}+\frac{\left(4 \cdot 8^{i}-2^{i}\right) K}{3 \cdot 2^{(i+2) p}}\right) \theta\|x\|^{p} \quad \text { if } 4<p,  \tag{2.8}\\
\sum_{i=n}^{n+m-1}\left(\frac{\mid k k^{i p}}{2 \cdot k^{4(i+1)}}+\frac{\left(4 \cdot \cdot^{i} 2^{2}\right) K}{3 \cdot 2^{(i+2) p}}\right) \theta\|x\|^{p} \quad \text { if } 3<p<4, \\
\sum_{i=n}^{n+m-1}\left(\frac{\mid k k^{i p}}{2 \cdot k^{4(i+1)}}+\frac{K 2^{i p}}{6 \cdot 8^{i+1}}+\frac{2^{i} K}{6 \cdot 2^{(i+1) p}}\right) \theta\|x\|^{p} \\
\text { if } 1<p<3, \\
\sum_{i=n}^{n+m-1}\left(\frac{\mid k k^{i p}}{2 \cdot k^{4}(i+1)}+\frac{\left(4^{i+1}-1\right) i^{i p} K}{6 \cdot 8^{i+1}}\right) \theta\|x\|^{p} \quad \text { if } p<1
\end{array}\right.
$$

for all $x \in X$ and $n, m \in \mathbb{N} \cup\{0\}$. It follows from (2.8) that the sequence $\left\{J_{n} f(x)\right\}$ is a Cauchy sequence for all $x \in X$. Since $Y$ is complete, the sequence $\left\{J_{n} f(x)\right\}$ converges for all $x \in X$. Hence we can define a mapping $F: X \rightarrow Y$ by

$$
F(x):=\lim _{n \rightarrow \infty} J_{n} f(x)
$$

for all $x \in X$. Moreover, letting $n=0$ and passing the limit $n \rightarrow \infty$ in (2.8) we get the inequality (2.4). For the case $1<p<3$, we easily get

$$
\begin{aligned}
&\left\|D_{k} F(x, y)\right\|= \lim _{n \rightarrow \infty} \| \frac{D_{k} f_{e}\left(k^{n} x, k^{n} y\right)}{k^{4 n}}+\frac{2^{n}}{6}\left(-D_{k} f_{o}\left(\frac{2 x}{2^{n}}, \frac{2 y}{2^{n}}\right)+8 D_{k} f_{o}\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}\right)\right) \\
&+\frac{D_{k} f_{o}\left(2^{n+1} x, 2^{n+1} y\right)-2 D_{k} f_{o}\left(2^{n} x, 2^{n} y\right)}{6 \cdot 8^{n}} \| \\
& \leq \lim _{n \rightarrow \infty}\left(\frac{|k|^{n p}}{k^{4 n}}+\frac{2^{n}\left(2^{p}+8\right)}{6 \cdot 2^{n p}}+\frac{2^{n p}\left(2^{p}+2\right)}{6 \cdot 8^{n}}\right) \times \theta\left(\|x\|^{p}+\|y\|^{p}\right) \\
&=0
\end{aligned}
$$

for all $x, y \in X$. Also we easily show that $D_{k} F(x, y)=0$ by the similar method for the other cases, either $p<1$ or $3<p<4$ or $4<p$.

To prove the uniqueness of $F$, let $F^{\prime}: X \rightarrow Y$ be another solution mapping satisfying (2.4). Instead of the condition (2.4), it is sufficient to show that there is a unique mapping that satisfies condition $\|f(x)-F(x)\| \leq\left(\frac{1}{2\left|k^{4}-|k|^{p}\right|}+\frac{K}{6\left|8-2^{p}\right|}+\right.$
$\left.\frac{K}{6\left|2-2^{p}\right|}\right) \theta\|x\|^{p}$ simply. By (2.6), the equality $F^{\prime}(x)=J_{n} F^{\prime}(x)$ holds for all $n \in \mathbb{N}$. For the case $1<p<3$, we have

$$
\begin{aligned}
\| J_{n} f(x)- & F^{\prime}(x)\|=\| J_{n} f(x)-J_{n} F^{\prime}(x) \| \\
\leq & \|-\frac{2^{n}}{6}\left(f_{o}\left(\frac{2 x}{2^{n}}\right)-8 f_{o}\left(\frac{x}{2^{n}}\right)\right)+\frac{f_{o}\left(2^{n+1} x\right)-2 f_{o}\left(2^{n} x\right)}{6 \cdot 8^{n}}+\frac{f_{e}\left(k^{n} x\right)}{k^{4 n}} \\
& +\frac{2^{n}}{6}\left(F_{o}^{\prime}\left(\frac{2 x}{2^{n}}\right)-8 F_{o}^{\prime}\left(\frac{x}{2^{n}}\right)\right)-\frac{F_{o}^{\prime}\left(2^{n+1} x\right)-2 F_{o}^{\prime}\left(2^{n} x\right)}{6 \cdot 8^{n}}-\frac{F_{e}^{\prime}\left(k^{n} x\right)}{k^{4 n}} \| \\
\leq & \frac{2^{n}}{6}\left\|\left(f_{o}-F_{o}^{\prime}\right)\left(\frac{2 x}{2^{n}}\right)\right\|+\frac{2^{n+3}}{6}\left\|\left(f_{o}-F_{o}^{\prime}\right)\left(\frac{x}{2^{n}}\right)\right\|+\frac{\left\|\left(f_{o}-F_{o}^{\prime}\right)\left(2^{n+1} x\right)\right\|}{6 \cdot 8^{n}} \\
& +\frac{2\left\|\left(f_{o}-F_{o}^{\prime}\right)\left(2^{n} x\right)\right\|}{6 \cdot 8^{n}}+\frac{\left\|\left(f_{e}-F_{e}^{\prime}\right)\left(k^{n} x\right)\right\|}{k^{4 n}} \\
\leq & \left(\frac{2^{n-1+p}+2^{n+2}}{3 \cdot 2^{n p}}+\frac{2^{(n+1) p}+2^{n p+1}}{3 \cdot 2^{3 n+1}}+\frac{\left.|k|\right|^{n p}}{k^{4 n}}\right) \\
& \times\left(\frac{K}{6 \mid 8-2^{p \mid}}+\frac{K}{6 \mid 2-2^{p \mid}}+\frac{1}{2\left|k^{4}-|k|^{p}\right|}\right) \theta\|x\|^{p}
\end{aligned}
$$

for all $x \in X$ and all positive integers $n$. Taking the limit in the above inequality as $n \rightarrow \infty$, we can conclude that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ for all $x \in X$. For the other cases, either $0<p<1$ or $3<p<4$ or $4<p$, we also easily show that $F^{\prime}(x)=\lim _{n \rightarrow \infty} J_{n} f(x)$ by the similar method. This means that $F(x)=F^{\prime}(x)$ for all $x \in X$.
Case 2: Assume that $|k|<1$. Let $J_{n} f: X \rightarrow Y$ be the mappings defined by $J_{n} f(x)=$

$$
\begin{cases}\frac{f_{e}\left(k^{n} x\right)}{k^{4 n}}+\frac{4 \cdot 8^{n}-2^{n}}{3} f_{o}\left(\frac{x}{2^{n}}\right)-\frac{8^{n+1}-2^{n+3}}{3} f_{o}\left(\frac{x}{2^{n+1}}\right) & \text { if } 4<p \\ k^{4 n} f_{e}\left(k^{-n} x\right)+\frac{4 \cdot 8^{8^{n}} 2^{n}}{3} f_{o}\left(\frac{x}{2^{n}}\right)-\frac{8^{n+1}-2^{n+3}}{3} f_{o}\left(\frac{x}{2^{n+1}}\right) & \text { if } 3<p<4 \\ k^{4 n} f_{e}\left(k^{-n} x\right)-\frac{2^{n-1}}{3}\left(f_{o}\left(\frac{x}{2^{n-1}}\right)-8 f_{o}\left(\frac{x}{2^{n}}\right)\right)+\frac{f_{o}\left(2^{n+1} x\right)-2 f_{o}\left(2^{n} x\right)}{6 \cdot 8^{n}} & \text { if } 1<p<3 \\ k^{4 n} f_{e}\left(k^{-n} x\right)+\frac{8 f_{o}\left(2^{n} x\right)-f_{o}\left(2^{n+1} x\right)}{6 \cdot 2^{n}}+\frac{f_{o}\left(2^{n+1} x\right)-2 f_{o}\left(2^{n} x\right)}{6 \cdot 8^{n}} & \text { if } p<1\end{cases}
$$

for all $x \in X$ and all nonnegative integers. Then, by the definitions of $J_{n} f$ and $\Lambda f$, the equality

$$
\begin{aligned}
& J_{n} f(x)-J_{n+1} f(x)= \\
& \qquad\left\{\begin{array}{lr}
-\frac{D_{k} f\left(0, k^{n} x\right)}{2 \cdot k^{4(n+1)}}+\frac{4 \cdot 8^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right)-\frac{2^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) & \text { if } 4<p, \\
\frac{k^{4 n}}{2} D_{k} f\left(0, \frac{x}{k^{n+1}}\right)+\frac{4 \cdot 8^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right)-\frac{2^{n}}{3} \Lambda f\left(\frac{x}{2^{n+2}}\right) & \text { if } 3<p<4, \\
\frac{k^{4 n}}{2} D_{k} f\left(0, \frac{x}{k^{n+1}}\right)-\frac{1}{48 \cdot 8^{n}} \Lambda f\left(2^{n} x\right)-\frac{2^{n-1}}{3} \Lambda f\left(\frac{x}{2^{n+1}}\right) & \text { if } 1<p<3, \\
\frac{k^{4 n}}{2} D_{k} f\left(0, \frac{x}{k^{n+1}}\right)+\frac{1}{12 \cdot 2^{n}} \Lambda f\left(2^{n} x\right)-\frac{1}{48 \cdot 8^{n}} \Lambda f\left(2^{n} x\right) & \text { if } p<1
\end{array}\right.
\end{aligned}
$$

holds for all $x \in X$ and all nonnegative integers $n$. Proof of the remaining part is omitted because it follows a procedure very similar to the case of $1<|k|$ from the above equality.

## References

1. J. Baker: A general functional equation and its stability. Proc. Natl. Acad. Sci. 133 (2005), no. 6, 1657-1664.
2. Y.J. Cho \& R. Saadati: Lattictic non-archimedean random stability of ACQ functional equation. Adv. Differ. Equ. 2011(1), 31.
3. P. Găvruta: A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings. J. Math. Anal. Appl. 184 (1994), 431-436.
4. M.E. Gordji, Y.J. Cho, H. Khodaei \& M. Ghanifard: Solutions and stability of generalized mixed type QCA-functional equations in random normed spaces. Annals of the Alexandru Ioan Cuza University-Mathematics 59 (2013), 299-320.
5. M.E. Gordji, S.K. Gharetapeh, C. Park \& S. Zolfaghri: Stability of an additive-cubicquartic functional equation. Adv. Differ. Equ. 2009 Article ID 395693.
6. D.H. Hyers: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27 (1941), 222-224.
7. J.M. Rassias, M. Arunkumar, E. Sathya \& N. Mahesh Kumar: Solution and stability of an ACQ functional equation in generalized 2-normed spaces. Intern. J. Fuzzy Mathematical Archive 7 (2015), 213-224.
8. Th.M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), 297-300.
9. R. Saadati, M.M. Zohdi \& S.M. Vaezpour: Nonlinear L-random stability of an ACQ functional equation. J. Inequal. Appl. 2011 Article ID 194394.
10. S.M. Ulam: A Collection of Mathematical Problems. Interscience, New York, 1960.
11. Z. Wang, X. Li \& Th.M. Rassias: Stability of an additive-cubic-quartic functional equation in multi-Banach spaces. Abstr. Appl. Anal. 2011 Article ID 536520.

Department of Mathematics Education, Gongju National University of Education, Gonguu 32553, Republic of Korea
Email address: lyhmzi@gjue.ac.kr


[^0]:    Received by the editors March 28, 2019. Accepted November 19, 2019.
    2010 Mathematics Subject Classification. 39B82, 39B52.
    Key words and phrases. stability of a functional equation, additive-cubic-quartic functional equation, additive-cubic-quartic mapping.

