DOI QR코드

DOI QR Code

Study on Verification Methodology of Airworthiness Requirements for Bird Strike on Civilian Helicopter based on Numerical Analysis

수치해석을 통한 민수용 헬리콥터의 조류충돌 인증 요구도 검증기법에 대한 연구

  • Kim, Dong-Hyeop (Department of Mechanical Engineering, Hankyong National University) ;
  • Kim, Sang-Woo (Department of Mechanical Engineering, Hankyong National University) ;
  • Kim, Hyun-Gi (Aeronautics Research and Development Head Office, Korea Aerospace Research Institute) ;
  • Kim, Sungchan (Aeronautics Research and Development Head Office, Korea Aerospace Research Institute) ;
  • Shin, Bok Kyun (Strategic Planning Office, Korea Aerospace Industries Association)
  • 김동협 (국립한경대학교 기계공학과) ;
  • 김상우 (국립한경대학교 기계공학과) ;
  • 김현기 (한국항공우주연구원 항공연구본부) ;
  • 김성찬 (한국항공우주연구원 항공연구본부) ;
  • 신복균 (한국항공우주산업진흥협회 전략기획실)
  • Received : 2019.10.21
  • Accepted : 2019.12.30
  • Published : 2019.12.31

Abstract

The increase of bird strike requires to be amended more safely current airworthiness requirements for bird strike. The USA and Europe are considering the methodology to verify the bird strike requirements based on the finite element analysis (FEA). Meanwhile, the aircraft airworthiness standards in Korea enacted by the Ministry of Land, Infrastructure and Transport were based on those enacted by the Federal Aviation Administration (FAA). This means that the verification methods using the FEA for the bird strike requirements should be reflected in the airworthiness standards in Korea. Our study proposes the methodology for bird strike simulation based on the FEA for the external auxiliary fuel tank assembly on the Surion helicopters and confirmed that the numerical outputs corresponded to the test results. The authors suggest that the methodology and procedure based on the FEA are adopted not only in the bird strike requirements but in various aircraft certifications of civilian rotorcraft.

매년 증가하는 항공기 조류충돌 사고는 현행 항공기 조류충돌 인증 요구도의 보완을 요구한다. 현재 미국과 유럽에서는 수치해석을 통해 조류충돌 요구도를 더욱 정밀하게 검증하는 방안을 검토 중이다. 한편 국토교통부에서 고시한 항공기 감항기준은 미국 연방항공청에서 제정한 감항기준에 준하여 작성되었다. 이는 국내 규정에서도 해석 기반의 조류충돌 요구도 검증 방안이 반영되어야 함을 의미한다. 본 논문에서는 한국항공우주산업(주)의 경찰청 헬리콥터 외부 보조연료탱크 조립체를 대상으로 유한요소 해석에 기반한 조류충돌 분석기법을 제안하였고, 해석 결과는 시험 결과에 상응하였다. 이에 따라 수치해석 기반의 분석기법과 절차가 조류충돌 요구도 뿐만 아니라, 나아가 다른 감항요건의 입증에도 폭넓게 활용되도록 제안하고자 한다.

Keywords

References

  1. Ministry of Land, Infrastructure, and Transport, "Reports of bird strike accident 2010-2016," Sejong City, Republic of Korea, May 2016
  2. R. A. Dolbeer, S. E. Wright, J. Weller, and M. J. Begier, "Wildlife strikes to civil aircraft in the United States 1990-2013," FAA Technical report, Office of Airport Safety and Standards, Washingtion D.C., Jan. 2014.
  3. F. Faith, "Miracle on the Hudson' passenger to speak on Feb. 20," The Tullahoma News (https://tullahomanews.com/), Feb. 2019.
  4. S. M. Lee, J. K. Hwang, and Y. K. Kim, "Bird strike requirements for helicopter and substantiation of Surion windshield," Proc. of Conf. The Korean Society for Aeronautical and Space Sciences, Jeju-do, Republic of Korea, pp. 484-485, Nov. 2017.
  5. M. L. Ugone, J. E. Meling, J. D Snider, N. J. Gause, and A. F. Carrey, "Acquisition: Fuel cells of the V-22 Osprey joint advanced vertical aircraft," Inspector General of the Department of Defense, Arlington, Oct. 2002.
  6. M. Guida, F. Marulo, M. Meo, A. Grimaldi, and G. Olivares, "SPH-Lagrangian study of bird impact on leading edge wing," Composites Structures, vol. 93, no. 3, pp. 1060-1071, Feb. 2011. https://doi.org/10.1016/j.compstruct.2010.10.001
  7. K. Y. Lee, B. J. Yi, H. G. Chung, and C. K. Ryoo, "A study on certification procedures for aircraft parts manufacturer approval," Journal of The Korean Society for Aeronautical and Space Sciences, vol. 42, no. 12, pp. 1073-1079, Dec. 2014. https://doi.org/10.5139/JKSAS.2014.42.12.1073
  8. D. H. Kim and S. W. Kim, "Numerical investigation of impact-induced damage of auxiliary composite fuel tanks on Korean Utility Helicopter," Composites, Part B: Engineering, vol. 165, pp. 301-311, May 2019. https://doi.org/10.1016/j.compositesb.2018.11.117
  9. D. H. Kim and S. W. Kim, "Evaluation of bird strike-induced damages of helicopter composite fuel tank assembly based on fluid-structure interaction analysis," Composite Structures, vol. 210, pp. 676-686, Feb. 2019. https://doi.org/10.1016/j.compstruct.2018.11.086
  10. D. J. Benson, "Computational methods in Lagrangian and Eulerian hydrocodes," Computer Methods in Applied Mechanics and Engineering, vol. 99, no. 2-3, pp. 235-394, Sep. 1992. https://doi.org/10.1016/0045-7825(92)90042-I
  11. J. H. Jo and Y. S. Lee, "Quantitative analysis of de bris clouds of aluminum plates with SPH," Proc. of Conf. The Society of CAD/CAM, Pyeongchang-gun, Republic of Korea, pp. 755-760, Jan. 2013.
  12. R. A. Gingold and J. J. Monaghen, "Smoothed particle hydrodynamics: theory and application to non-spherical stars," Monthly Notices of The Royal Astronomical Society, vol. 181, no. 3, pp. 375-389, Dec. 1977. https://doi.org/10.1093/mnras/181.3.375
  13. Dassault, "Abaqus Analysis User's manual - Section 15.2.1," Abaqus 6.13 edition, Apr. 2013.
  14. Z. Hashin, "Failure criteria for unidirectional fiber composites," Journal of Applied Mechanics, vol. 47, pp. 329-334, Jun. 1980. https://doi.org/10.1115/1.3153664
  15. Z. Hashin and A. Rotem, "A fatigue failure criterion for fiber-reinforced materials," Journal of Composite Materials, vol. 7, pp. 448-464, Oct. 1973. https://doi.org/10.1177/002199837300700404
  16. X. Yang, Z. Zhang, J. Yang, and Y. Sun, "Fluid-structure interaction analysis of the drop impact test for helicopter fuel tank," Springerplus, vol. 5, no. 1, pp. 1573, Dec. 2016. https://doi.org/10.1186/s40064-016-3040-5
  17. M. Y. Park, Y. J. Kim, J. H. Kim, S. Y. Jang, and C. Y. Park, "Bird strike test and result analysis for the safety design of aircraft structures," Proc. of Conf. The Korean Society for Aeronautical and Space Sciences, Wonju-si, Republic of Korea, pp. 293-296, Apr. 2010.
  18. J. S. Wilbeck, "AFMLTR-77-134: Impact behaviour of low-strength projectiles," Technical report Air Force Materials Laboratory, Wright-Patterson Air Force Base, State of Ohio, Jul. 1978.
  19. N. Nanami and O. O. Ochoa, "Damage assessment of a large-scale hybrid composite wind turbine blade," Journal of Mechanical Engineering and Automation, vol. 6, no. 5, pp. 117-127, 2016.
  20. H. G. Kim and S. C. Kim, "A numerical study on the influence of the amount of internal fuel in a bird strike test for the external auxiliary fuel tank of rotorcraft," International Journal of Crashworthiness, pp. 1-15, Dec. 2017.
  21. P. Kumar and B. Rai, "Delaminations of barely visible impact damage in CFRP laminates," Composite Structures, vol. 23, pp. 313-318, 1993. https://doi.org/10.1016/0263-8223(93)90231-E