DOI QR코드

DOI QR Code

다목적 무인헬기 복합재 로터 블레이드의 단면 구조설계 및 강성 측정

Cross-sectional Design and Stiffness Measurements of Composite Rotor Blade for Multipurpose Unmanned Helicopter

  • 기영중 (한국항공우주연구원 항공기체계부) ;
  • 김덕관 (한국항공우주연구원 항공기체계부) ;
  • 신진욱 (성우엔지니어링 UAV 연구소)
  • Kee, Young-Jung (Aircraft System Division, Korea Aerospace Research Institute) ;
  • Kim, Deog-Kwan (Aircraft System Division, Korea Aerospace Research Institute) ;
  • Shin, Jin-Wook (UAV Research Center, Sungwoo Engineering)
  • 투고 : 2019.08.19
  • 심사 : 2019.11.20
  • 발행 : 2019.12.31

초록

로터 블레이드는 허브를 통해 전달된 토크와 조종장치를 이용한 피치각 제어를 통해 헬리콥터 비행에 필요한 양력, 추력 및 기동력을 발생시킬 수 있는 핵심 구성품이며, 구조적인 안전성과 함께 공진의 위험성이 없도록 진동 특성을 고려하여 설계되어야 한다. 본 연구에서는 다목적 무인 헬리콥터(Multi-Purpose Utility Helicopter)에 적용하기 위한 주로터 블레이드의 구조 설계를 수행하였으며, 제작된 블레이드의 단면 강성 측정 시험을 수행하였다. 이후 측정된 강성 분포를 반영하여 로터 시스템의 진동특성에 대한 평가를 수행하였다. 로터 블레이드 내부는 스킨, 스파 및 토션박스로 구성되며, 탄소 및 유리 섬유 복합소재를 적용하였다. 블레이드 단면 강성 예측을 위해 Ksec2D 프로그램을 활용하였으며, 실험을 통해 측정된 값과 비교한 결과를 제시하였다. 로터 시스템의 회전으로 인한 고유진동수 변화 및 공진 위험 여부를 확인하기 위해 회전익 항공기의 통합 해석 프로그램인 CAMRADII를 활용하였다.

The rotor blade is a key component that generates the lift, thrust, and control forces required for helicopter flight by the torque transmitted through the hub and the blade pitch angle control, and should be designed to factor vibration characteristics so that there is no risk of resonance with structural safety. In this study, the structural design of the main rotor blade for MPUH(Multi-Purpose Unmanned Helicopter) was conducted and the sectional stiffness measurement of the fabricated blade was performed. The evaluation of the vibration characteristics of the main rotor system was then conducted factoring the measured stiffness distribution. The interior of the rotor blade comprised of the skin, spar, and torsion box, and carbon and glass fiber composites were applied. The Ksec2D program was applied to predict the stiffness of blade, and the results were compared to the measured data. CAMRADII, a comprehensive rotorcraft analysis program, was applied to investigate the natural frequency trends and resonance risks due to the rotor rotation.

키워드

참고문헌

  1. K. T. Lee, "Introduction to mission requirements and technical trend of rotary-wing unmanned aerial vehicle system", Journal of Korean Society for Aeronautical and Space Sciences, vol. 30(8), pp. 156-163, 2002. https://doi.org/10.5139/JKSAS.2002.30.8.156
  2. World Unmanned Aerial Vehicle Markets, 31 Oct 2002.
  3. Forst & Sullivan, Military Unmanned Aerial Systems Market Assessment, 20 Apr 2012.
  4. D. Fanjoy and W. Crossley, "Using a genetic algorithm for structural topology design of helicopter rotor blades", 19th AIAA Applied Aerodynamics Conference, 2001.
  5. J. Paik, V. V. Volovoi and D. H. Hodges, "Cross sectional sizing and optimization of composite blades", 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conf., Denver, Colorado, 2002.
  6. Y. J. Won and S. Y. Lee, "A study on the structural optimum design method of composite blade cross section using genetic algorithm", Journal of Korean Society for Aeronautical and Space Sciences, vol. 41(4), pp. 275-283, 2013. https://doi.org/10.5139/JKSAS.2013.41.4.275
  7. I. J. Park and S. N. Jung, "General purpose cross section analysis program for composite rotor blade", International Journal of Aeronautical & Space Science, vol. 10(2), pp. 77-85, 2009. https://doi.org/10.5139/IJASS.2009.10.2.077
  8. W. Johnson, CAMRADII Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics, John Aeronautics, 2007.
  9. C. Cesnik and R. Palacios, UM/VABS, Theoretical Manual, Aerospace Dept., University of Michigan, 2003.
  10. www.nfx.co.kr, Midas-NFX User's Manual