
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, Nov. 2019 5560
Copyright ⓒ 2019 KSII

How to retrieve the encrypted data on the

blockchain

Huige Li 1,2, Fangguo Zhang 1,2*, Peiran Luo1,2, Haibo Tian1,2
 and Jiejie He1,2

1 School of Data and Computer Science, Sun Yat-sen University

Guangzhou 510006 - China
2 Guangdong Key Laboratory of Information Security

Guangzhou 510006 - China
[e-mail: isszhfg@mail.sysu.edu.cn]

*Corresponding author: Fangguo Zhang

Received January 4, 2019; revised March 20, 2019; accepted May 9, 2019;
published November 30, 2019

Abstract

Searchable symmetric encryption (SSE) scheme can perform search on encrypted data directly
without revealing the plain data and keywords. At present, many constructive SSE schemes
were proposed. However, they cannot really resist the malicious adversary, because it (i.e., the
cloud server) may delete some important data. As a result, it is very likely that the returned
search results are incorrect. In order to better guarantee the integrity of outsourcing data, and
ensure the correction of returned search results at the same time, in this paper, we combine
SSE with blockchain (BC), and propose a SSE-on-BC framework model. We then construct
two concrete schemes based on the size of the data, which can better provide privacy
protection and integrity verification for data. Lastly, we present their security and performance
analyses, which show that they are secure and feasible.

Keywords: Searchable encryption, blockchain, cloud-storage, symmetric encryption,
privacy

This research was supported by the National Natural Science Foundation of China (No. 61672550), the National
Key R&D Program of China (No. 2017YFB0802503), and the Guangxi Key Laboratory of Cryptography and
Information Security (No. GCIS201711).

http://doi.org/10.3837/tiis.2019.11.016 ISSN : 1976-7277

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5561

1. Introduction

Cloud storage not only allows clients to access their outsourcing data anytime and anywhere,
but also charges them a small fee, therefore, more and more people turn to upload data onto it.
The cryptography technology provides a technical support on the confidentiality and privacy
of these outsourcing data. However, simple cryptography encryption algorithm will hinder the
search capability on these encrypted outsourcing data. To address this issue, Song et al. are the
first people to propose the concept of searchable encryption (SE) [1]. Because it uses
symmetric encryption technology in their paper, it can be seen as a searchable symmetric
encryption scheme (SSE).

The data owner and server are the two main participants in SSE. The data owner uses a
symmetric encryption algorithm to encrypt data, then he (or she) uploads them on the cloud.
When searching the data that contain keyword w, he (or she) encrypts this keyword w by using
secret key, and generates a search token t(w), which will be sent to the cloud server. The cloud
server computes search results by using ciphertexts and t(w), and sends them to the data owner.
Lastly, the data owner decrypts these search results locally.

There are many constructive SSE schemes in recent years, such as schemes supporting
single keyword [2,3], multiple keyword [4,5,6,7], fuzzy matching [8,9], ranked search
[10,11,12], dynamic SSE schemes [13,14,15,16,17,18,19,20,21], parallel SSE scheme [22],
and the scheme that supports multi-level access policy [23]. In addition, Bӧsch et al. did a
comprehensive survey of SSE [24].

Some researchers also consider the security level problem in SSE. For example, to against
malicious adversary, Kurosawa et al. used the message authentication code technology [25],
while Cheng et al. used indistinguishability obfuscation [26]. Dai et al. used the physically
unclonable function to prevent memory leakage [27]. While, Li et al. introduced the coercer
into SSE [28].

In the above schemes, the cloud server usually is trustworthy, who directly controls the
users' data. Although this third party is trustworthy, sometimes it will damage the user's data
for its personal benefit. For example, it may tamper with users' data to save its space. Once it
happens, the users cannot get true search results. What's worse, if the third party deletes the
data that used to verify whether the results are right or not, the users will never judge the
correctness of returned results. In order to solve these problems, a simple solution is that the
user selects multiple cloud storage platforms to store his (or her) data. He (or she) can perform
search on these platforms respectively, and merges the search results together. But this method
will waste a lot of network traffic and bandwith.

However, the blockchain technology can provide a potential solution to the above issue.
The blockchain is an emerging technology in recent years, which is stemmed from the Bitcoin
system [29] but can be seen as an independent technology. It is composed of blocks one after
another. The data is collected and verified by nodes on the blockchain. Only it is accepted by
most of nodes, it can be stored in one block. Users can access these data freely, but they cannot
tamper with them because the blockchain uses some tools, such as the cryptography hash
function and so on.

The data on the blockchain is maintained by everyone. The modified data cannot be
accepted as long as the majority of nodes are honest. Therefore, we can use this technology to
build a cloud storage system to ensure the data integrity. This it to say, users can store their

5562 Li et al.: How to retrieve the encrypted data on the blockchain

data on a blockchain in the form of transactions. Consequently, except accessing the data
flexibly, they do not have to worry about their data being tampered with by illegal users.

Because the size of each block on the blockchain is fixed, the number of data stored in it is
limited. When more and more data are generated, the length of the whole blockchain continues
to raise. As a result, the problem of how to search data on the blockchain becomes intractable.
Taking the Bitcoin system for example, the data on this blockchain are transactions, whose
size is small. If Alice wants to find transactions she finished in a certain period of time, she has
to find them in the order from back to front. Suppose there are |T | transactions on the
blockchain, therefore, the search efficiency is linear in O(|T |).

It is very interesting to consider the privacy security of data and improve the search
complexity on the blockchain. Because it not only protects the privacy of data, but also can
guarantee the correctness of the search results. Moreover, it can save users’ time. Take the
electronic medical systems as an example, at present each hospital keeps the electronic
medical records (EMRs) of their patients privately, which can be seen as a private cloud server.
These hospitals do not share EMRs to each other. When a patient chooses a new hospital to see
a doctor, because he or she cannot obtain all his or her EMRs in time, his or her illness may not
be treated quickly. However, this dilemma can be avoided by using blockchain. That is, each
hospital uploads the patients' EMR onto the blockchain in time. The patient then can find his
(or her) EMRs at any time and does not need to interact with previous hospital respectively.
This scenario was mentioned by Swan in [30]. However, it did not give an effective solution.
Our contribution. In this paper, we combine blockchain with SSE, and give a solution to protect
the privacy of data and realize search. Our contributions are summarized as below:
- We propose a SSE framework on the blockchain and name it SSE-on-BC, which can better

guarantee the integrity of the data and resist the malicious adversary.
- We construct two schemes based on the size of data. Because the smart contract can verify data

automatically on the blockchain, the data owner in our schemes can fully believe that the
returned search results are correct.

- We complete the security and performance analyses for our schemes, which show that our
schemes is adaptively secure and feasible.

Organization. The remainder of this paper is organized as follows. In section 2, we review
some tools and notations. In section 3, the SSE-on-BC model and its security definition are
proposed. There are two concrete constructions in section 4. Next are the analyses of
performance and security of our schemes. The conclusion is present in the last section.

2. Preliminaries
We will review some tools and notations in this section. It mainly includes negligible function,
the model of SSE, Bitcoin system, and so on.
Definition 1. A function f (·) is negligible if for every polynomial p (·) there exists an integer

N such that for all integer n>N it holds that f (n)< 1
()p n

.

2.1 The model of SSE
In Fig. 1, there have two players: the data owner and the cloud server. In the first stage, the
data owner uses his secret key k to encrypt data D into C, and builds an invertible index I,
which are sent to the cloud server. When searching data containing the keyword w, the data

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5563

owner combines the secret key k with w, and gets a search token tw, which is sent to the cloud
server. The cloud server returns the search result

jiC . Lastly, he decrypts
jiC locally.

Fig. 1. Traditional SSE Model.

2.2 Bitcoin system
To make readers understand blockchain clearly, in this section, we review some knowledge
about the Bitcoin system.

The addresses and transactions are two important elements in the Bitcoin system. To create
a transaction, each client must generate a pair of keys (i.e., a private key and a public key)
firstly. The private key is used to sign transaction, and gets a signature σ. The public key is
used to generate an address and verify whether the σ is valid or not [31]. Compared with
traditional electronic cryptocurrency [32, 33], the Bitcoin supports change. To make reader
understand clearly, we will use symbol A = (A.pk, A.sk) to denote a key pair of user A. Let
σ=sigA (m) denote a signature about transaction m, which is computed by A’s private key A.sk,
and a verification result about signature σ denoted by verA (m,σ), which is computed by A’s
public key A.pk.

A transaction T may have multiple inputs and outputs. The inputs show where these coins
come from. The outputs indicate how much money should be given to each recipient, which is
represented by an address. Each transaction will have an in-script and an out-script, and both
of them are written in Bitcoin scripting language, i.e., the stack based language [34]. Generally,
if transaction T wants to redeem transaction Tx, its in-script must match with the out-script of
Tx.

Tx (in:Ty1,Ty2)

In-script:σ1 In-script:σ2

Out-script (body,σ):
 π x (body,σ)

Val:v BTC

Ty1

v1 BTC

Ty2

v2 BTC

v BTC

Fig. 2. The construction process of transaction Tx.

Let BTC represent the bitcoin cryptocurrency symbol. To make the reader understand
clearly, we will use Fig. 2 to explain how the transaction works. Suppose Alice wants to pay
Bob v BTC = v1BTC + v2 BTC (here we do not consider the transaction fee), she needs to
create a transaction Tx. She finds two unredeemed transactions Ty1 and Ty2 from her wallet,
such that v = v1 + v2. In order to show she can spend these money, she puts her signatures σ1 and

5564 Li et al.: How to retrieve the encrypted data on the blockchain

σ2 in the in-script of Tx. Alice adds a function πx (body,σ) in the out-script of transaction Tx to
indicate she will transfer v BTC to Bob, whose output is a Boolean.

Generally, we can use Tx=(y1,y2,πx,v,σ1,σ2) to denote the transaction Tx, where y1 is a hash
of Ty1 and y2 is a hash of Ty2. In addition, the clients can specify a time t in a transaction, which
means that this transaction will be collected by miners after time t. In the Bitcoin system, if a
transaction wants to be accepted earlier, it needs to pay some transaction fees. That is, v1 + v2 >
v usually holds, and the difference between them is the transaction fees.

Besides, we enumerate the meanings of some functions and symbols that we will use later,
which are shown in Table 1.

Table 1. Notations used in our SSE-on-BC scheme.

Notations Meaning
D the plain document.
C the encrypted document.

W={w1,w2,···,wm} The dictionary composed of the keywords w1,w2,···,wm, where w1, ···,wm are
extracted from the document D.

k the system parameter.
a||b a concatenation of string a and string b.
Fi (i=1,2,3) a keyed pseudorandom function Fi:{0,1}k×{0,1}*

→{0,1}k.
H a keyed hash function: H: {0,1}k×{0,1}l·p

→{0,1}p, where l, p are big prime.
H1 a hash function without key H1: {0,1}l·p

→{0,1}p, where l, p are big prime.

ε=(ε.Enc, ε.Dec)
an indistinguishability against chosen-plaintext attacks (IND-CPA) secure
symmetric encryption (SE) scheme, where ε.Enc denotes the encryption
process and ε.Dec denotes the decryption process.

δ=(δ.Enc, δ.Dec) a determinate SE scheme, where δ.Enc denotes the encryption process and
δ.Dec denotes the decryption process.

x←{UTXO} x is sampled from the set {UTXO} at random, where each UTXO denotes
an unredeemed transaction in the blockchain.

ι the upper bound of the size of transaction.
G=<g> a multiple group of order p, whose generator is g. The p is a big prime.
DB(w) a set composed of document transactions related to the keyword w.
|A| the cardinal number of set A.
[T] The body of the transaction T, which does not contain its in-script value.

3. Our System Model
In this section, the SSE-on-BC model is firstly presented, the following is its security
definition.

3.1 The model of SSE-on-BC
It have two participants in Fig. 3 the data owner U and the server S (i.e., a receiver of
transaction). The data owner U has n data D1,···, Dn. To protect their privacy, he will
encrypt them into C1,···, Cn by using symmetric encryption algorithm. He then uploads
them on the blockchain in the form of transactions T1,···,Tn respectively. He then creates a
transaction Inx based on these transactions T1,···,Tn. To find the data containing the
keyword w, he puts the search token t(w) and the identifier TXInx of transaction Inx into
function Φ, and embeds function Φ into transaction t. He then broadcasts it on the
blockchain. If the server S can provide correct search results, it can redeem transaction t

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5565

by using transaction s. Otherwise, the data owner U will use transaction p to redeem
transaction t.

Fig. 3. The Model of SSE-on-BC.

Our SSE-on-BC model (i.e., SSE-on-BC= (Gen, Enc, Trpdr, Search, Dec)) contains the

following five polynomial-time algorithms:
(a) (K, U, S)← Gen (1k): It is a probabilistic algorithm run by the data owner U and the

server S. The inputting parameter is k, and the outputs are a secret key K, a pair of keys
U=(U.pk,U.sk) and a pair of keys S=(S.pk,S.sk).

(b) (T, Inx, TXInx)← Enc (K, U, D, 0{ }n
di iT =): is a probabilistic algorithm run by the data

owner U. It inputs the secret key K, the pair of keys U, the documents set D = (D1,···,
Dn) and n+1 unredeemed transactions Td0, …, Tdn, and outputs n+1 transactions T =
{T1,···,Tn}, Inx. Besides, the data owner needs to store the identifier TXInx of transaction
Inx locally.

(c) t← Trpdr (K, w, U, TXInx, Tw): It is a determinate algorithm, which is run by the data
owner U. The inputs are the secret key K, the pair of keys U, keyword w, identifier
TXInx and an unredeemed transaction Tw. The output is a transaction t, whose receiver is
either U or the server S.

(d) s/p← Search (T, Inx, TXInx ,t, S/U): It is run either by the server S or the data owner U.
If the server S can provide correct search results, it needs to take T, Inx, TXInx , t, S as
input, and outputs a transaction s. Otherwise, the data owner inputs U and t to output a
transaction p, which can be used to redeem transaction t.

(e) {Dij}← Dec (K, s): It is a decryption algorithm run by the data owner U. The inputs are
the secret key K and the transaction s, and it outputs the plaintexts {Dij} locally.

A SSE-on-BC scheme is correct if for all k∈N, for all K, U, S output by Gen(1k), for all data
D 2∆⊆ , for all (T, Inx, TXInx) output by Enc(K, U, D, 0{ }n

di iT =), for all keyword w∈∆ , such
that

Search (T, Inx, TXInx , Trpdr(K, w, U, TXInx, Tw), S)=s∧Dec(K, s)= {Dij}, for 1≤ i≤n. (1)

5566 Li et al.: How to retrieve the encrypted data on the blockchain

3.2 Security Definition
A secure SSE-on-BC scheme should satisfy the following conditions.

 The server S cannot derive any useful information about the plain data when it accesses to
the blockchain for the first time;

 After search, in addition to the search results, the server S also cannot get any useful
information about plaintexts and keywords.

 If the server S cannot return the right search results to the data owner U, it cannot redeem
the transaction t created by the data owner U.

Re ()Aal k∏
(K, U, S)← Gen (1k) s1←Search(T, Inx, TXInx,

1wt , S)

(D, stA) ←A0 (1k) for 2≤ i≤q,

0{ }n
di iT = ←A0 (stA ,{UTXO}) (wi, stA) ←Ai (stA, T, Inx, TXInx,

1wt ,,
1iwt −

)

(1{ }n
i iT = ,Inx, TXInx) ←Enc(K,U,D, 0{ }n

di iT =)
iwT ←Ai (stA, {UTXO})

Let T=(T1,···,Tn)
iwt ←Trpdr(K, wi, U, TXInx,

iwT)

(w1, stA) ←A1 (stA, T, Inx, TXInx) si ←Search(T, Inx, TXInx,
iwt , S)

1wT ←A1 (stA, {UTXO}) Let Tr = (
1wt ,,

qwt), TS = (s1,,sq)

1wt ←Trpdr(K, w1, U, TXInx,
1wT) Output V=(Inx, T, Tr, TS) and stA

Fig. 4. Game Re ()Aal k∏ .
Adversary either is adaptive or non-adaptive. When the adversary is adaptive, it can select

keyword based on the previous keywords and search results. When the adversary is
non-adaptive, it should choose all the keywords at once. In this paper, we only consider the
former.
Definition 2. Let Π=(Gen, Enc, Trpdr, Search, Dec) denote a SSE-on-BC scheme, L be a
leakage function that is parameterized by access pattern, search pattern and size pattern
defined in [3], k be the security parameter. Considering the following games Re ()Aal kΠ and

, ()A SIdeal kΠ shown in the Fig. 4 and 5.

, ()A SIdeal kΠ
(D, stA) ←A0 (1k) for 2 ≤ i ≤ q,

0{ }n
di iT = ←A0 (stA ,{UTXO}) (wi, stA) ←Ai (stA, T, Inx, TXInx,

1wt ,,
1iwt −

)

(1{ }n
i iT = , Inx, TXInx) ←S0(L(D), 0{ }n

di iT =)
iwT ←Ai (stA, {UTXO})

Let T=(T1,···,Tn) (,
iwt stS)←Si (stS, L(D,w1,, wi),

iwT)

(w1, stA) ←A1 (stA, T, Inx, TXInx) (si, stS)←Si (stS, L(D,
iwt , Inx, TXInx))

1wT ←A1 (stA, {UTXO}) Let Tr = (
1wt ,,

qwt), TS = (s1,,sq)

(
1wt ,stS)←S1 (stS, L(D,w1),

1wT) Output V=(Inx, T, Tr, TS) and stA

(s1, stS)←S1 (stS, L(D,
1wt , Inx, TXInx))

Fig. 5. Game , ()A SIdeal kΠ .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5567

We say a SSE-on-BC scheme is adaptively semantically secure if for all polynomial size
adversaries A=(A0, A1,, Aq) where q=poly(k), there exists a non-uniform polynomial size
simulator S=(S0, S1,, Sq), such that for all polynomial size D,
|Pr[D(V, stA)=1: (V, stA) ← Re ()Aal kΠ] - Pr[D(V, stA)=1:(V, stA) ← , ()A SIdeal kΠ] | ≤ neg(k), (2)
where the probabilities are taken over the coins of Gen and Enc.

4. The detailed scheme
Since the size of each block on the blockchain is limited, we should consider the size of the
data before uploading. To solve this problem, we present two concrete constructions in this
section.

4.1 A SSE-on-BC scheme supports lightweight data
Suppose the size of data array D=(D1,···, Dn) is small. In order to upload them on the
blockchain, the data owner U will do the following steps:
(a) Gen: After inputting a security parameter k, the data owner U gets a secret key array K=

(K1,K2), where Ki ← {0,1}k (i =1, 2). Besides, the data owner U and the server S generate
a pair of keys U= (U.sk,U.pk) =(u1,gu1) and a pair of keys S= (S.sk,S.pk) = (s1,gs1)
respectively, where u1,s1∈Zp and gu1, gs1∈G.

(b) Enc: For each document Dj (1 ≤ j ≤ n), the user computes:
 Ci = ε.Enc(K1, Di) (i =1,,n), (3)
He then selects an empty set DB(wi) for each keyword wi∈W (i =1,,m). If document Dj
(1 ≤ j ≤ n) contains keyword wi, he puts Cj into DB(wi). To make readers understand
clearly, suppose Δi=|DB(wi)|, and DB(wi)={ 1iC , ,

iiC ∆ }. He continues to compute:

 1 2(,),
iw it F K w= (4)

 2 2(,),
iw il F K w= (5)

iwk =F3(K2,wi) , (6)

iwh =H(

iwk , 1iC ||||
iiC ∆). (7)

In order to store the ciphertext Ci (i =1,,n) on the blockchain, he finds n unredeemed
transactions TXD01,,TXD0n from his own wallet, which contain d1,, dn amount of coins
respectively. He then builds transactions

iDTX (i =1,,n) in the following manner:

1) For transaction
iDTX , he embeds Ci (i =1,,n) into its out-script. Then he uses

transaction TXD0i to compute the body value of transaction
iDTX .

2) Sign transaction
iDTX by using his private key U.sk, which is broadcasted to the

blockchain.
3) If the transactions

1DTX ,,
nDTX appear on the blockchain, the data owner U

computes
iDTXID =H1(iDTX)(i =1,,n), which are seen as the identifiers of

transactions
1DTX ,,

nDTX respectively.

For each keyword wi (i =1,,m), if Cj ∈DB(wi), he replaces Cj with
jDTXID (1≤ j≤ n, i

=1,,m).

5568 Li et al.: How to retrieve the encrypted data on the blockchain

Let Δ=
1
max

i m≤ ≤
{Δi}. If Δi <Δ, he pads DB(wi) with Δ-Δi elements 0p such that |DB(wi)| = Δ,

where i=1,,m. Here, we still use symbol DB(wi) to represent the result after padding.
He chooses an empty array I. For each keyword wi∈W, he computes:

iwe =δ.Enc(
iwl , DB(wi)) (8)

He stores (, ,)
i i iw w wt e h into array I in a lexicographical manner.

To generate a transaction Inx for documents D, the data owner U does:
1) Find an unredeemed transaction TX0 from his wallet, which contains d0 coins.
2) For transaction Inx, he embeds I into its out-script.
3) Take transaction TX0 as input, and compute the body of transaction Inx.
4) Sign transaction Inx by using U.sk, and broadcasts it on the blockchain.

After it appears on the blockchain, he computes its identifier TXInx=H1(Inx) and stores it
locally, otherwise he needs to recreate transaction Inx.

Suppose Φ(,) is a function, which consists of a decryption algorithm and a
verification algorithm. It takes two strings x, y as input. It then executes:
1) Use y to find the transaction q.
2) Decrypt the information that embedded in transaction q by using x. Suppose the

decryption results are (α, β).

3) Inputs α, β and x, and it will verify whether β
?
= H(x, α) holds or not. If it does, it will

outputs α,1, where 1 is a Boolean value. Otherwise it outputs a termination
symbol⊥ .

(c) Trpdr: When U wants to find the data containing the keyword w, he will create a
transaction ask shown in Fig. 6. The concrete construction is as follows:
1) Find an unredeemed transaction Tq from his wallet, which contains dt coins.
2) Compute tw = F1 (K2, w), lw = F2 (K2, w) and kw = F3 (K2, w), the data owner U then puts

Φ((tw, lw, kw), TXInx) into the out-script of ask.
3) Use Tq to compute the body of ask.
4) Inputting transaction ask, the data owner U and server S compute the body of

transaction Fuse respectively. Here, it has a time lock t in the transaction Fuse.
5) The server S signs the transaction Fuse by using S.sk, and sends it to U to let him add

his own signature in it.
6) After signing the transaction ask by using U.sk, the data owner U broadcasts it.
7) If transaction ask does not appear on the blockchain until time t-maxU, the data owner

U can redeem transaction Tq by using his private key, and quits the protocol
immediately. Here, the symbol maxU means the maximal possible delay time of
transaction Tq appares on the blockchain.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5569

Fig. 6. How to get the lightweight data containing keyword w.

(d) Search: When the server S wants to redeem the transaction ask, it needs to bulid a
transaction return shown in Fig. 6, which contains the information of the search results.
The concrete process is as follows:
1) Input transaction ask, and compute the body of transaction return.
2) Run function Φ((tw, lw, kw), TXInx):

i. Use TXInx to get the information I embedded in the transaction Inx.
ii. Use tw to find (ew, hw), which is stored in I.

iii. Decrypt ew by using lw: DB(w) = δ.Dec(lw, ew). For brevity, let we use

1 2
() { , ,

l lD DDB w TXID TXID= ,
ln

DTXID } to denote the decryption results, where

1()
l lj j

D DTXID H TX= (j=1,,n) denotes the identifier of transaction
l jDTX

(j=1,,n).
iv. Read the document ciphertext

jlC from transaction
l jDTX by using

jlDTXID (j =1,

,n).
3) Verify whether the equation

1
(,C ||w lH k …|| C)

nl wh= holds or not. If it holds, it puts

{
jlC } into the in-script of transaction return.

4) Sign transaction return, and broadcast it onto the blockchain.
(e) Dec: After transaction return appearing on the blockchain, the data owner U can read

{
jlC } from it. He continues to do: 1. ,)(

jj llD CEnc Kε= (1≤ j≤ n). If the transaction return
does not appear on the blockchain after time t, he will broadcast transaction Fuse and gets
his money back.

4.2 A SSE-on-BC scheme supports the Data with big size
If the scale of data is larger, we should deal with it before uploading it. Suppose the data owner
U' has n documents D1,···, Dn, whose size is larger. In order to store them on the blockchain, he

5570 Li et al.: How to retrieve the encrypted data on the blockchain

will do:
a) Gen: It inputs the security parameter k, and outputs a secret key array K= (K1,K2), where

Ki ← {0,1}k (i =1, 2). Besides, the data owner U' and the server S generate a pair of keys
U= (U'.sk,U'.pk) =(u1,gu1) and a pair of keys S= (S.sk,S.pk) = (s1,gs1) respectively, where
u1,s1∈Zp and gu1, gs1∈G.

b) Enc: The data owner U' encrypts documents D=(D1,···, Dn) by using the secret key K1:
 Ci=ε.Enc(K1, Di) (i =1,, n). (9)
1) If |Ci| > ι-p:

He divides Ci into s blocks 1iC′ , 2iC′ ,, isC′ such that | |ijC p i′ + ≤ , where
| |iC

s
pi

=
−

 
  

,

j = 1,…, s.
For each keyword wi∈W (i =1,,m), he chooses an empty set d(wi) and assigns elements
to it in this way: If document Dj (1 ≤ j ≤ n) contains keyword wi, he puts Cj into d(wi).
Suppose d(wi)={ 1iC , ,

iiC ∆ }. He computes:

 1 2(,),
iw it F K w= (10)

 2 2(,),
iw il F K w= (11)

iwk =F3(K2,wi) , (12)

iwh =H(

iwk , 1iC ||||
iiC ∆). (13)

He finds s unredeemed transactions
10iDTX ′ ,, 0isDTX ′ from his wallet, which contain

di1,···,dis amount of coins respectively, and builds transactions
ikDTX ′ (k =1,, s) as

follows:
For k =1:

i. Embed 1 0 p
iC′‖ into the out-script of transaction

1iDTX ′ .

ii. Take transaction
10iDTX ′ as input, and compute the body of transaction

1iDTX ′ .

iii. Sign transaction
1iDTX ′ by using U'.sk, and broadcast it onto the blockchain.

iv. After transaction
1iDTX ′ appears on the blockchain, he computes its

identifier
1 11()

i iD DTXID H TX′ ′= .
For 2 ≤ k≤ s:

i. In the out-script of transaction
ikDTX ′ , he embeds information

(1)i kik DC TXID
−′′‖ .

ii. Take 0ikDTX ′ as input, and compute the body of transaction
ikDTX ′ .

iii. Sign it by using U'.sk, and broadcast it to the blockchain.
iv. If the transaction

ikDTX ′ appears on the ledger, he computes its corresponding

transaction identifier 1()
ik ikD DTXID H TX′ ′= .

2) When |Ci|≤ ι-p (1≤ i ≤ n), he finds an unredeemed transaction TXD0i from his wallet,
which contains di coins. He then builds a transaction

iDTX as follows:

i. In the out-script of transaction
iDTX , he embeds information Ci.

ii. Inputting transaction TXD0i , he computes the body of transaction
iDTX .

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5571

iii. Sign it by using U'.sk, and broadcast it on the blockchain.
iv. After it appears on the blockchain, he computes its identifier

1()
i iD DTXID H TX= .

For each keyword wi (1≤ i ≤ m), he assigns an empty set DB(wi). He assigns elements to
it in the following way:

i. If
ji iw D∈ and| |

jiC pi> − , he puts
i jD sTXID ′ into the set DB(wi).

ii. If
ji iw D∈ and| |

jiC pi≤ − , he puts
i jDTXID into the set DB(wi).

Suppose Δi=|DB(wi)|, and let Δ=
1
max

i m≤ ≤
{Δi}. If Δi <Δ, he pads the set DB(wi) with Δ-Δi

elements 0p such that |DB(wi)| = Δ, where i=1,,m.
He continues to do:

iwe =δ.Enc(
iwl ,DB(wi)), (14)

For w1, he generates a transaction
1IwTX as follows:

i. He finds an unredeemed transaction TXIw10 from his wallet, which contains dw10
coins.

ii. Compute K11= F2(K2,0p) and
1 1 11 11. (, 0)p

w w wr Enc K t e hδ= ‖ ‖ ‖ .

iii. Embed r1 in the out-script of
1IwTX .

iv. Take transaction TXIw10 as input, and compute the body of transaction
1IwTX .

v. He signs the transaction
1IwTX , and broadcasts it on the blockchain.

vi. After it appears on the blockchain, he computes its identifier:

1 1
()w IwTI H TX= .

vii. If transaction
1IwTX does not appear on the blockchain, the data owner can

redeem transaction TXIw10 quickly and quits the protocol.
For wj∈W (2≤ j ≤ m), the data owner builds transaction

jIwTX as follows:
i. Find an unredeem transaction TXIj0 from his wallet, which contains dj0 coins.

ii. Compute K11= F2(K2,0p), and
111. (,)

j j j jj w w w wr Enc K t e h TIδ
−

= ‖ ‖ ‖ .

iii. Embed rj in the out-script of
jIwTX .

iv. Input transaction TXIj0 , and compute the body of transaction
jIwTX .

v. Sign transaction
jIwTX by using U'.sk, and broadcast it on the blockchain.

vi. If the transaction
jIwTX appears on the blockchain, he records its identifier

1()=
j jw IwTI H TX .

vii. If transaction
jIwTX does not appear on the blockchain, the data owner can

redeem transaction TXIj0 quickly and quits the protocol.
The data owner needs to store

mwTI locally.
Let Φ(,) be the function defined in section 4.1.

5572 Li et al.: How to retrieve the encrypted data on the blockchain

c) Trpdr: When finding data that contain the keyword w. He needs to create a transaction ask,
which is shown in Fig. 7:
i. Find an unredeemed transaction Tq from his wallet, which contains dt coins.

ii. Compute tw =F1(K2,w), lw=F2(K2,w), K11=F2(K2,0p) and kw=F3(K2, w).
iii. Embed Φ((tw, lw, kw), K11,

mwTI) into the out-script of ask.
iv. To compute the body of transaction ask, he inputs transaction Tq.
v. Taking the transaction ask as input, for transaction Fuse, the data owner U' and the

server S compute its body. This transaction Fuse contains a time t. The server S
signs transaction Fuse and sends it to U'.

vi. After signing the transaction ask, the data owner U' broadcasts it.
vii. After time t-maxU', if the transaction ask does not appear on the blockchain, the data

owner U' redeems transaction Tq by using his private key and quits the protocol
immediately, where maxU' is the maximal possible delay of including it in the
blockchain.

Fig. 7. How to return the documents that contain keyword w.

d) Search: When the server S wants to redeem the transaction ask as shown in Fig. 7, it does:

1) Take transaction ask as input, and compute the body of transaction return
transaction.

2) Run the function Φ(tw, lw, kw,K11,
mwTI): Firstly, it uses

mwTI to get the

information rm from transaction
mIwTX . It then computes || || ||

m m mw w wt e h

1 11. (,)
mw mTI Dec K rδ
−
= . Next, it will do:

- If =
mw wt t , it continues to do: . (,)

m m mw w wDB Dec l eδ= . For brevity, let we

use
1

{
m mw DDB TXID= ,, }

mDTXID
D

 to denote the decryption results. It then

finds ciphertext Ci by using (1)
miD iTXID ≤ ≤ D :

i. In the transaction
miDTX , if it contians

imC , it outputs it.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5573

ii. If the information is
(1)i m sim s DC TXID
−′′ ‖ in the transaction

miDTX , it

firstly outputs
im sC′ , and then uses identifier

m jiDTXID ′ to get the

information
im jD′ (j=s-1,···, 1) from transaction

m jiDTX ′ (j=s-1,···, 1).

Lastly, it sets 1i im mC C′= ‖
im sC′‖ .

- If ≠
mw wt t , it continues to use transaction identifier

−m jwTI to read information

rm-j (j=1,···, m-1) from transaction
m jIwTX
−

 (j= 1,···, m-1). If
−
=

m jw wt t holds, it
stops. That is to say, he does:

i. Decrypt
1 11. (,)

m j m j m j m jw w w w m jt e h TI Dec K rδ
− − − − − −=‖ ‖ ‖ ,

ii. Verify
?

−
=

m jw wt t . If this equation holds, he uses the above method to

decrypt
−m jwDB to get {Cl1,,Cln}. If it does not hold, he continues to

read the information rm-j-1 embedded in the transaction
1− −m jIwTX until

−
=

m jw wt t holds.
3) Embed the ({Cl1,,Cln}, hw) into the out-script of transaction return.
4) After signing the transaction return, he broadcasts it.

e) Dec: After the transaction return appears on the blockchain, the data owner U recovers

{
jlC } from it. He continues to compute 1. ,)(

jj llD CEnc Kε= (1≤ j≤ n). After time t, if the
transaction return still does not appear on the blockchain, he will broadcast transaction
Fuse to get his money back.

5. Security and Performance Analysis
The idea of the scheme presented in section 4.1 is similar to that in section 4.2. The difference
between them is that the latter needs to divide documents into blocks before uploading them
on the blockchain. When search, the server needs to find all the appropriate blocks and merge
them together. Here, we only present performance analysis and security analysis for the first
scheme. For the second scheme, readers can derive them by themselves.

5.1 Performance
Our computer configuration is Intel(R) Xeon(R) CPU E3-1230 v5 @ 3.40GHz , 32GB
memory. We simulate our scheme on the Fabric with version number 1.4, which is stable. We
create an orderer server, three organizations on it, and each organization has two peer nodes.
That is to say, we build 6 peer nodes in the blockchain network. The size of the block is set to
be 99MB. It takes about 2s to generate a block. We instantiate the pseudorandom functions F1,
F2, F3 with HMAC-SHA256, the hash function H and H1with HMAC-SHA256, and SE
schemes ,δ ε with AES in the CBC mode with a 256 bit key. We sample 9411 RFC files
(400MB) from the IETF website (https://www.ietf.org/rfc/) and extract 600 keywords
randomly. We then transform them in the form of array (keyword, file). The number of test data
ranges from 1000 to 105.

https://www.ietf.org/rfc/

5574 Li et al.: How to retrieve the encrypted data on the blockchain

To show the efficiency of our scheme, we will elaborate from the following points:
Setup time. It mainly means the time used to generate an invertible index. The time begins

after the documents are uploaded to the blockchain, and ends after the index I appears on the
blockchain. The Fig. 8 shows the time to create an index for files with different scales. It is
easy to get that as the size of the data grows, the time of creating an index is increasing.

Search time. This time includes the search token generation time of the keyword w, the
time it takes to create a smart contract, and the time to find the files containing keyword w.
Because the transaction ask contains a functionΦ , we can use a smart contract to simulate it.
In this smart contract, it contains decryption algorithm, for loop algorithm, and hash
verification. Fig. 9 shows the result after it is created on the Fabric.
When searching the data containing the keyword w, the server needs to provide the

transaction return to complete it. We simulate it by invoke the smart contract that we built
above. As shown in Fig. 10, we give its search time respectively under different scales of data.

Fig. 9. The information about the smart contract

Table 1. Comparison between verifiable SSE schemes. The n denotes the total number of files, m
denotes the number of transactions, d(w) denotes the number of the files containing the keyword w.

scheme computation
cost

communication
cost

Fully against malicious adversary

[25] O(n) O(d(w)) No
[26] O(n+r) O(d(w)) No
our scheme O(m) O(d(w)) Yes

Table 2 is a comparison result between our SSE-on-BC scheme with other works. Let n denote
the number of files need to be uploaded in the cloud server, m, the number of the transactions
used to store n files on the blockchain, r, the size of indistinguishability obfuscation, and d(w),
the number of files containing the keyword w. As shown in it, schemes [25] is optimal.

Fig. 10. The time it takes to finish a search
on the data with different sizes. The

symbol w represents a keyword, D denotes
a file.

Fig. 8. The time it takes to create an index
for data with different scales. The symbol w

represents a keyword, D denotes a file.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5575

However, it cannot resist fully malicious adversary, as well as scheme [26]. Though our
scheme store files in the form of transaction, the size of each transaction is nearly equal to the
size of the ciphertext which is stored in the transaction. That is to say, our schemes is also
optimal.

5.2 Security Analysis
In this section, we give its security proof of our first scheme.
Theorem 1. If F1, F2, F3 are pseudorandom functions, H and H1 are collision resistant hash
function, and ε = (ε.Enc, ε.Dec) is PCPA-secure symmetric encryption scheme, then the
scheme we present in section 4.1 is adaptively IND-CKA2 secure.

Proof. Let we construct a PPT simulator 0 1{ , ,..., }qS S S S= such that, for an adversary

0 1{ , ,..., }qA A A A= , the output of , ()A SIdeal kΠ and Re ()Aal kΠ is computationally
indistinguishable.

Suppose the simulator S can get access to the trace of a history 1(| |L T= ,,

| |,| |, ())n wT Inx TXτ where ()wTXτ denotes the search pattern and the access pattern about

keyword w. It then generates * *
1(,Inx T ,, * * *, ,)nT Tr TS and creates transaction ask* as

follows:
i. Simulating *

1T ,, *
nT .

If q=0, it can set 1| |*
1 {0,1}CC ← ,, | |* {0,1} nC

nC ← .
Because the encryption algorithm (. , .)ε ε ε= Enc Dεc is PCPA-secure, it means that

*
1C ,, *

nC are computationally indistinguishable from 1C ,, nC coming from the

Re ()Aal kΠ game. Moreover, the adversary A does not have the private key, therefore, it

cannot create valid transactions *
1T ,, *

nT which embeds *
1C ,, *

nC respectively. If it
asks the simulator S to sign these transaction, it will result in the transactions

*
1T ,, *

nT are computationally indistinguishable from the transactions T1, ···, Tn that

generated in the ()AReal kΠ game.
ii. Simulating Inx*.

If q=0, S sets * {0,1}← k
wt , * *{0,1} , {0,1}← ←k k

w we h . Therefore, the tw, ew, hw
output by Enc are computationally indistinguishable from t*

w, e*
w, h*

w.
If q≥1, S selects * *,{0,1} {0,1}

q q

k k
w wl k← ← , and does * *. (,

q qw we Enc lδ= *())qDB w ,
* * *

1(,
q q qw w wh H k C= ‖  *)

qw nC‖ . Because 2 3,F F are pseudorandom functions, the
* *(,)

q qw we h is computationally indistinguishable from (,)
q qw we h generated from the step

Enc.
Because function F1 is pseudorandom, the

qwt output by Enc is computationally

indistinguishable from *
qwt which is choosed at random from{0,1}k .

Therefore, *Inx is computationally indistinguishable from Inx.

5576 Li et al.: How to retrieve the encrypted data on the blockchain

iii. Simulating *Tr .
In the transaction *Tr , it embeds *

wt and TXinx. Because TXinx is broadcasted to each

other, A can get it easily. Here we only consider *
wt is indistinguishable from tw. It uses

the pseudorandom function F1 to generate tw for keyword w in the step Trpdr in the
section 4.1, and tw is indistinguishable from * {0,1}← k

wt that S chooses at random.

Therefore, *Tr is computationally indistinguishable from Tr.
iv. Claiming the transaction ask by using transaction s.

When q=0, if A wants to get the money from the transaction *s . S returns

1({ iC ,, },)in wC h to A , where {0,1}k
ijC ← (j=1,···,n) and {0,1}← k

wh .

 When 1≥q , S firstly returns 1({ wqC ,, })wqnC to A , where wqjC (j=1,···,n) is the

history of access pattern about keyword wq. S then sets * {0,1}←
q

k
wk and computes

* *
1(,

q qw w wqh H k C= ‖)wqnC‖ which will be sent to A . Because F3 is a pseudorandom

function, therefore the transaction s that A creates cannot claim the money from
transaction ask.

6. Conclusion
This paper provided a search method for encrypted data on the blockchain, and constructed
two concrete search algorithms based on the size of data. We also give its security and
performance analyses. Compared to the existing SSE schemes, our scheme can automatically
resist malicious adversary. In addition, the server only needs to find the document transactions
which are related to the keyword w, therefore, our search complexity is sub-linear with the
total number of documents. Since our scheme can better protect the privacy and integrity of
data, it can be applied in many industries, such as medical healthcare, insurance and finance.

At present, the blockchain is still in its infancy, and it only supports static data. Therefore,
how to design a scheme supports data update and search on it is very interesting. This is also
our next work.

References
[1] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches on encrypted data,” in

Proc. of 2000 IEEE Symposium on Security and Privacy, IEEE, pages 44–55, 2000.
Article (CrossRef Link)

[2] E. J. Goh, “Secure indexes,” IACR Cryptology ePrint Archive, 2003. http://eprint.iacr.org/2003/216
[3] R. Curtmola, J. A. Garay, S. Kamara, and et al., “Searchable symmetric encryption: improved

definitions and efficient constructions,” in Proc. of the 13th ACM conference on Computer and
communications security, ACM, pages 79–88, 2006. Article (CrossRef Link)

[4] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over encrypted data,”
International Conference on Applied Cryptography and Network Security, Springer, pages 31–45,
2004. Article (CrossRef Link)

[5] T. Moataz and A. Shikfa, “Boolean symmetric searchable encryption,” in Proc. of the 8th ACM
SIGSAC symposium on Information, computer and communications security, ACM, pages
265–276, 2013. Article (CrossRef Link)

http://dx.doi.org/doi:10.1109/SECPRI.2000.848445
http://eprint.iacr.org/2003/216
http://dx.doi.org/doi:10.1145/1180405.1180417
http://dx.doi.org/doi:10.1007/978-3-540-24852-1_3
http://dx.doi.org/doi:10.1145/2484313.2484347

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5577

[6] D. Cash, S. Jarecki, C. S. Jutla, and so on, “Highly-scalable searchable symmetric encryption with
support for boolean queries,” Advances in Cryptology–CRYPTO 2013, Springer, pages 353–373,
2013. Article (CrossRef Link)

[7] S. Kamara, T. Moataz, “Boolean searchable symmetric encryption with worst-case sub-linear
complexity,” in Proc. of Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Springer, pages 94–124, 2017. Article (CrossRef Link)

[8] J. Li, Q. Wang, C.Wang, and et al., “Fuzzy keyword search over encrypted data in cloud
computing,” in Proc. of INFOCOM, 2010 Proceedings IEEE, pages 1–5, 2010.
Article (CrossRef Link)

[9] A. Boldyreva, N. Chenette, “Efficient fuzzy search on encrypted data,” Fast Software Encryption,
Springer, pages 613–633, 2014. Article (CrossRef Link)

[10] W. K. Wong, D. W. Cheung, B. Kao, and et al., “Secure knn computation on encrypted databases,”
in Proc. of the 2009 ACM SIGMOD International Conference on Management of data, ACM,
pages 139–152, 2009. Article (CrossRef Link)

[11] N. Cao, C. Wang, M. Li, and et al., “Privacy-preserving multi-keyword ranked search over
encrypted cloud data,” IEEE Trans. Parallel Distrib. Syst., 25(1), 222–233, 2014.
Article (CrossRef Link)

[12] Z. J. Fu, F. X. Huang, K. Ren, and et al., “Privacy-preserving smart semantic search based on
conceptual graphs over encrypted outsourced data,” IEEE Trans. Information Forensics and
Security, 12(8):1874–1884, 2017. Article (CrossRef Link)

[13] P. V. Liesdonk, S. Sedghi, J. Doumen, and et al., “Computationally efficient searchable symmetric
encryption,” in Proc. of Workshop on Secure Data Management, Springer, pages 87–100, 2010.
Article (CrossRef Link)

[14] S. Kamara, C. Papamanthou, and T. Roeder, “Dynamic searchable symmetric encryption,” in Proc.
of the 2012 ACM conference on Computer and communications security, ACM, pages 965–976,
2012. Article (CrossRef Link)

[15] K. Kurosawa and Y. Ohtaki, “How to update documents verifiably in searchable symmetric
encryption,” in Proc. of Cryptology and Network Security-12th International Conference, CANS
2013, pages 309–328, Paraty, Brazil, November 20-22, 2013. Article (CrossRef Link)

[16] D. Cash, J. Jaeger, S. Jarecki, and et al., “Dynamic searchable encryption in very-large databases:
Data structures and implementation,” NDSS, volume 14, pages 23–26, Citeseer, 2014.
Article (CrossRef Link)

[17] M. Naveed, M. Prabhakaran, and C.A. Gunter, “Dynamic searchable encryption via blind
storage,” Security and Privacy (SP), 2014 IEEE Symposium on, IEEE, pages 639–654, 2014.
Article (CrossRef Link)

[18] C. Guo, X. Chen, Y. M. Jie, and et al., “Dynamic multi-phrase ranked search over encrypted data
with symmetric searchable encryption,” IEEETrans. Services Computing, 2017.
Article (CrossRef Link)

[19] E. Stefanov, C. Papamanthou, and E. Shi, “Practical dynamic searchable encryption with small
leakage,” NDSS, volume 14, pages 23–26, 2014. Article (CrossRef Link)

[20] R. Bost, P. A. Fouque, and D. Pointcheval, “Verifiable dynamic symmetric searchable encryption:
Optimality and forward security,” IACR Cryptology ePrint Archive, 2016:62, 2016.
http://eprint.iacr.org/2016/062

[21] R. Bost, “∑oφoς: Forward Secure Searchable Encryption,” in Proc. of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, ACM, pages 1143–1154, 2016.
Article (CrossRef Link)

[22] S. Kamara, C. Papamanthou, “Parallel and dynamic searchable symmetric encryption,” in Proc. of
International Conference on Financial Cryptography and Data Security, Springer, pages 258–274,
2013. Article (CrossRef Link)

[23] J. Alderman, K. Martin, and S. Louise Renwick, “Multi-level access in searchable symmetric
encryption,” in Proc. of International Conference on Financial Cryptography and Data Security,
Springer, pages 35-52, 2017. Article (CrossRef Link)

http://dx.doi.org/doi:10.1007/978-3-642-40041-4_20
http://dx.doi.org/doi:10.1007/978-3-319-56617-7_4
http://dx.doi.org/doi:10.1109/INFCOM.2010.5462196
http://dx.doi.org/doi:10.1007/978-3-662-46706-0_31
http://dx.doi.org/doi:10.1145/1559845.1559862
http://dx.doi.org/doi:10.1109/TPDS.2013.45
http://dx.doi.org/doi:10.1109/TIFS.2017.2692728
http://dx.doi.org/doi:10.1007/978-3-642-15546-8_7
http://dx.doi.org/doi:10.1145/2382196.2382298
http://dx.doi.org/doi:10.1007/978-3-319-02937-5_17
http://dx.doi.org/doi:10.14722/ndss.2014.23264
http://dx.doi.org/doi:10.1109/SP.2014.47
http://dx.doi.org/doi:10.1109/TSC.2017.2768045
http://dx.doi.org/doi:10.14722/ndss.2014.23298
http://eprint.iacr.org/2016/062
http://dx.doi.org/doi:10.1145/2976749.2978303
http://dx.doi.org/doi:10.1007/978-3-642-39884-1_22
http://dx.doi.org/doi:10.1007/978-3-319-70278-0_3

5578 Li et al.: How to retrieve the encrypted data on the blockchain

[24] C. B¨osch, P. Hartel, W. Jonker, and et al., “A survey of provably secure searchable encryption,”
ACM Computing Surveys (CSUR), 47(2), 18, 2015. Article (CrossRef Link)

[25] K. Kurosawa and Y. Ohtaki, “UC-secure searchable symmetric encryption,” Financial
Cryptography and Data Security, Springer, pages 285–298, 2012. Article (CrossRef Link)

[26] R. Cheng, J. Yan, C. Guan, and et al., “Verifiable searchable symmetric encryption from
indistinguishability obfuscation,” in Proc. of the 10th ACM Symposium on Information, Computer
and Communications Security, ASIA CCS ’15, pages 621– 626, Singapore, April 14-17, 2015.
Article (CrossRef Link)

[27] S. G. Dai, H. G. Li, and F. G. Zhang, “Memory leakage-resilient searchable symmetric encryption,”
Future Generation Comp. Syst., 62, 76–84, 2016. Article (CrossRef Link)

[28] H. G. Li, F. G. Zhang, and C. I. Fan, “Deniable searchable symmetric encryption,” Information
Sciences, 402:233–243, 2017. Article (CrossRef Link)

[29] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2008. Article (CrossRef Link)
[30] M. Swan, “Blockchain: Blueprint for a new economy [M],” O’Reilly Media, Inc., 2015.
[31] M. Andrychowicz, S. Dziembowski, D. Malinowski, and et al., “Fair two-party computations via

bitcoin deposits,” in Proc. of International Conference on Financial Cryptography and Data
Security, Springer, pages 105–121, 2014. Article (CrossRef Link)

[32] D. Chaum, “Blind signatures for untraceable payments,” Advances in cryptology, pages 199–203,
Springer, 1983. Article (CrossRef Link)

[33] D. Chaum, “Blind signature system,” Advances in cryptology, Springer, pages 153–153, 1984.
Article(CrossRefLink)

[34] M. Andrychowicz, S. Dziembowski, D. Malinowski, and et al., “Secure multiparty computations
on bitcoin,” in Proc. of 2014 IEEE Symposium on Security and Privacy, IEEE, pages 443–458,
2014. Article (CrossRef Link)

Huige Li received her M.S degree from the School of Mathematics and Information
Science, Shaanxi Normal University in 2013. She is currently reading for her Ph.D. at the
school of Electronics and Information Technology of Sun Yat-sen University, China. Her
research focuses on Searchable Encryption.

Fangguo Zhang received his Ph.D. from the School of Communication Engineering,
Xidian University in 2001. He is currently a Professor at the School of Data and Computer
Science of Sun Yat-sen University, China. He is the co-director of Guangdong Key
Laboratory of Information Security Technology. His research mainly focuses on
cryptography and its applications.

http://dx.doi.org/doi:10.1145/2636328
http://dx.doi.org/doi:10.1007/978-3-642-32946-3_21
http://dx.doi.org/doi:%2010.1145/2714576.2714623
http://dx.doi.org/doi:10.1016/j.future.2015.11.003
http://dx.doi.org/doi:10.1016/j.ins.2017.03.032
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/doi:10.1007/978-3-662-44774-1_8
http://dx.doi.org/doi:10.1007/978-1-4757-0602-4_18
http://dx.doi.org/doi:10.1007/978-1-4684-4730-9_14
http://dx.doi.org/doi:10.1109/SP.2014.35

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019 5579

Peiran Luo received his B.E. degree from the School of Computer, South China Normal
University in 2018. At present, he is reading for his M.E. at the school of Data and Computer
Science of Sun Yat-sen University, China. His research focuses on Blockchain and its
applications.

Haibo Tian received his Ph.D. from the School of Communication Engineering, Xidian
University in 2006. He is currently an associate Professor at the School of Data and Computer
Science of Sun Yat-sen University, China. His research mainly focuses on security protocol
analysis and its design.

Jiejie He received his B.E. degree from the School of Information Technology, Minzu
University of China in 2015. At present, he is reading for his M.E. at the school of Data and
Computer Science of Sun Yat-sen University, China. His research focuses on Blockchain and
its applications.

