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Abstract 
 

Searchable symmetric encryption (SSE) scheme can perform search on encrypted data directly 
without revealing the plain data and keywords. At present, many constructive SSE schemes 
were proposed. However, they cannot really resist the malicious adversary, because it (i.e., the 
cloud server) may delete some important data. As a result, it is very likely that the returned 
search results are incorrect. In order to better guarantee the integrity of outsourcing data, and 
ensure the correction of returned search results at the same time, in this paper, we combine 
SSE with blockchain (BC), and propose a SSE-on-BC framework model. We then construct 
two concrete schemes based on the size of the data, which can better provide privacy 
protection and integrity verification for data. Lastly, we present their security and performance 
analyses, which show that they are secure and feasible.  
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1. Introduction 

Cloud storage not only allows clients to access their outsourcing data anytime and anywhere, 
but also charges them a small fee, therefore, more and more people turn to upload data onto it. 
The cryptography technology provides a technical support on the confidentiality and privacy 
of these outsourcing data. However, simple cryptography encryption algorithm will hinder the 
search capability on these encrypted outsourcing data. To address this issue, Song et al. are the 
first people to propose the concept of searchable encryption (SE) [1]. Because it uses 
symmetric encryption technology in their paper, it can be seen as a searchable symmetric 
encryption scheme (SSE). 

The data owner and server are the two main participants in SSE. The data owner uses a 
symmetric encryption algorithm to encrypt data, then he (or she) uploads them on the cloud. 
When searching the data that contain keyword w, he (or she) encrypts this keyword w by using 
secret key, and generates a search token t(w), which will be sent to the cloud server. The cloud 
server computes search results by using ciphertexts and t(w), and sends them to the data owner. 
Lastly, the data owner decrypts these search results locally. 

There are many constructive SSE schemes in recent years, such as schemes supporting 
single keyword [2,3], multiple keyword [4,5,6,7], fuzzy matching [8,9], ranked search 
[10,11,12], dynamic SSE schemes [13,14,15,16,17,18,19,20,21], parallel SSE scheme [22], 
and the scheme that supports multi-level access policy [23]. In addition, Bӧsch et al. did a 
comprehensive survey of SSE [24]. 

Some researchers also consider the security level problem in SSE. For example, to against 
malicious adversary, Kurosawa et al. used the message authentication code technology [25], 
while Cheng et al. used indistinguishability obfuscation [26]. Dai et al. used the physically 
unclonable function to prevent memory leakage [27]. While, Li et al. introduced the coercer 
into SSE [28]. 

In the above schemes, the cloud server usually is trustworthy, who directly controls the 
users' data. Although this third party is trustworthy, sometimes it will damage the user's data 
for its personal benefit. For example, it may tamper with users' data to save its space. Once it 
happens, the users cannot get true search results. What's worse, if the third party deletes the 
data that used to verify whether the results are right or not, the users will never judge the 
correctness of returned results. In order to solve these problems, a simple solution is that the 
user selects multiple cloud storage platforms to store his (or her) data. He (or she) can perform 
search on these platforms respectively, and merges the search results together. But this method 
will waste a lot of network traffic and bandwith.  

However, the blockchain technology can provide a potential solution to the above issue. 
The blockchain is an emerging technology in recent years, which is stemmed from the Bitcoin 
system [29] but can be seen as an independent technology. It is composed of blocks one after 
another. The data is collected and verified by nodes on the blockchain. Only it is accepted by 
most of nodes, it can be stored in one block. Users can access these data freely, but they cannot 
tamper with them because the blockchain uses some tools, such as the cryptography hash 
function and so on.  

The data on the blockchain is maintained by everyone. The modified data cannot be 
accepted as long as the majority of nodes are honest. Therefore, we can use this technology to 
build a cloud storage system to ensure the data integrity. This it to say, users can store their 
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data on a blockchain in the form of transactions. Consequently, except accessing the data 
flexibly, they do not have to worry about their data being tampered with by illegal users.  

Because the size of each block on the blockchain is fixed, the number of data stored in it is 
limited. When more and more data are generated, the length of the whole blockchain continues 
to raise. As a result, the problem of how to search data on the blockchain becomes intractable. 
Taking the Bitcoin system for example, the data on this blockchain are transactions, whose 
size is small. If Alice wants to find transactions she finished in a certain period of time, she has 
to find them in the order from back to front. Suppose there are |T | transactions on the 
blockchain, therefore, the search efficiency is linear in O(|T |). 

It is very interesting to consider the privacy security of data and improve the search 
complexity on the blockchain. Because it not only protects the privacy of data, but also can 
guarantee the correctness of the search results. Moreover, it can save users’ time. Take the 
electronic medical systems as an example, at present each hospital keeps the electronic 
medical records (EMRs) of their patients privately, which can be seen as a private cloud server. 
These hospitals do not share EMRs to each other. When a patient chooses a new hospital to see 
a doctor, because he or she cannot obtain all his or her EMRs in time, his or her illness may not 
be treated quickly. However, this dilemma can be avoided by using blockchain. That is, each 
hospital uploads the patients' EMR onto the blockchain in time. The patient then can find his 
(or her) EMRs at any time and does not need to interact with previous hospital respectively. 
This scenario was mentioned by Swan in [30]. However, it did not give an effective solution. 
Our contribution. In this paper, we combine blockchain with SSE, and give a solution to protect 
the privacy of data and realize search. Our contributions are summarized as below: 
- We propose a SSE framework on the blockchain and name it SSE-on-BC, which can better 

guarantee the integrity of the data and resist the malicious adversary.  
- We construct two schemes based on the size of data. Because the smart contract can verify data 

automatically on the blockchain, the data owner in our schemes can fully believe that the 
returned search results are correct. 

- We complete the security and performance analyses for our schemes, which show that our 
schemes is adaptively secure and feasible. 

Organization. The remainder of this paper is organized as follows. In section 2, we review 
some tools and notations. In section 3, the SSE-on-BC model and its security definition are 
proposed. There are two concrete constructions in section 4. Next are the analyses of 
performance and security of our schemes. The conclusion is present in the last section. 

2. Preliminaries 
We will review some tools and notations in this section. It mainly includes negligible function, 
the model of SSE, Bitcoin system, and so on. 
Definition 1. A function f (·) is negligible if for every polynomial p (·) there exists an integer 

N such that for all integer n>N it holds that f (n)< 1
( )p n

. 

2.1 The model of SSE 
In Fig. 1, there have two players: the data owner and the cloud server. In the first stage, the 
data owner uses his secret key k to encrypt data D into C, and builds an invertible index I, 
which are sent to the cloud server. When searching data containing the keyword w, the data 
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owner combines the secret key k with w, and gets a search token tw, which is sent to the cloud 
server. The cloud server returns the search result 

jiC . Lastly, he decrypts 
jiC  locally. 

 
Fig. 1. Traditional SSE Model. 

2.2 Bitcoin system 
To make readers understand blockchain clearly, in this section, we review some knowledge 
about the Bitcoin system. 

The addresses and transactions are two important elements in the Bitcoin system. To create 
a transaction, each client must generate a pair of keys (i.e., a private key and a public key) 
firstly. The private key is used to sign transaction, and gets a signature σ. The public key is 
used to generate an address and verify whether the σ is valid or not [31]. Compared with 
traditional electronic cryptocurrency [32, 33], the Bitcoin supports change. To make reader 
understand clearly, we will use symbol A = (A.pk, A.sk) to denote a key pair of user A. Let 
σ=sigA (m) denote a signature about transaction m, which is computed by A’s private key A.sk, 
and a verification result about signature σ denoted by verA (m,σ), which is computed by A’s 
public key A.pk.  

A transaction T may have multiple inputs and outputs. The inputs show where these coins 
come from. The outputs indicate how much money should be given to each recipient, which is 
represented by an address. Each transaction will have an in-script and an out-script, and both 
of them are written in Bitcoin scripting language, i.e., the stack based language [34]. Generally, 
if transaction T wants to redeem transaction Tx, its in-script must match with the out-script of 
Tx. 

 
Tx (in:Ty1,Ty2)

In-script:σ1 In-script:σ2

Out-script (body,σ):
    π x (body,σ)

Val:v BTC

Ty1

v1 BTC

Ty2

v2 BTC

v BTC
 

Fig. 2. The construction process of transaction Tx. 
 

Let BTC represent the bitcoin cryptocurrency symbol. To make the reader understand 
clearly, we will use Fig. 2 to explain how the transaction works. Suppose Alice wants to pay 
Bob v BTC = v1BTC + v2 BTC (here we do not consider the transaction fee), she needs to 
create a transaction Tx. She finds two unredeemed transactions Ty1 and Ty2 from her wallet, 
such that v = v1 + v2. In order to show she can spend these money, she puts her signatures σ1 and 
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σ2 in the in-script of Tx. Alice adds a function πx (body,σ) in the out-script of transaction Tx to 
indicate she will transfer v BTC to Bob, whose output is a Boolean. 

Generally, we can use Tx=(y1,y2,πx,v,σ1,σ2) to denote the transaction Tx, where y1 is a hash 
of Ty1 and y2 is a hash of Ty2. In addition, the clients can specify a time t in a transaction, which 
means that this transaction will be collected by miners after time t. In the Bitcoin system, if a 
transaction wants to be accepted earlier, it needs to pay some transaction fees. That is, v1 + v2 > 
v usually holds, and the difference between them is the transaction fees. 

Besides, we enumerate the meanings of some functions and symbols that we will use later, 
which are shown in Table 1. 

 
Table 1. Notations used in our SSE-on-BC scheme. 

Notations Meaning 
D the plain document. 
C the encrypted document. 

W={w1,w2,···,wm} The dictionary composed of the keywords w1,w2,···,wm, where w1, ···,wm are 
extracted from the document D. 

k the system parameter. 
a||b a concatenation of string a and string b. 
Fi (i=1,2,3) a keyed pseudorandom function Fi:{0,1}k×{0,1}*

→{0,1}k. 
H a keyed hash function: H: {0,1}k×{0,1}l·p

→{0,1}p, where l, p are big prime. 
H1 a hash function without key H1: {0,1}l·p

→{0,1}p, where l, p are big prime. 

ε=(ε.Enc, ε.Dec) 
an indistinguishability against chosen-plaintext attacks (IND-CPA) secure 
symmetric encryption (SE) scheme, where ε.Enc denotes the encryption 
process and ε.Dec denotes the decryption process. 

δ=(δ.Enc, δ.Dec) a determinate SE scheme, where δ.Enc denotes the encryption process and 
δ.Dec denotes the decryption process. 

x←{UTXO} x is sampled from the set {UTXO} at random, where each UTXO denotes 
an unredeemed transaction in the blockchain. 

ι the upper bound of the size of transaction. 
G=<g> a multiple group of order p, whose generator is g. The p is a big prime. 
DB(w) a set composed of document transactions related to the keyword w. 
|A| the cardinal number of set A. 
[T] The body of the transaction T, which does not contain its in-script value. 

3. Our System Model 
In this section, the SSE-on-BC model is firstly presented, the following is its security 
definition. 

3.1 The model of SSE-on-BC 
It have two participants in Fig. 3 the data owner U and the server S (i.e., a receiver of 
transaction). The data owner U has n data D1,···, Dn. To protect their privacy, he will 
encrypt them into C1,···, Cn by using symmetric encryption algorithm. He then uploads 
them on the blockchain in the form of transactions T1,···,Tn respectively. He then creates a 
transaction Inx based on these transactions T1,···,Tn. To find the data containing the 
keyword w, he puts the search token t(w) and the identifier TXInx of transaction Inx into 
function Φ, and embeds function Φ into transaction t. He then broadcasts it on the 
blockchain. If the server S can provide correct search results, it can redeem transaction t 
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by using transaction s. Otherwise, the data owner U will use transaction p to redeem 
transaction t.  

 
Fig. 3. The Model of SSE-on-BC. 

 
Our SSE-on-BC model (i.e., SSE-on-BC= (Gen, Enc, Trpdr, Search, Dec)) contains the 

following five polynomial-time algorithms:  
(a) (K, U, S)← Gen (1k): It is a probabilistic algorithm run by the data owner U and the 

server S. The inputting parameter is k, and the outputs are a secret key K, a pair of keys 
U=(U.pk,U.sk) and a pair of keys S=(S.pk,S.sk). 

(b) (T, Inx, TXInx)← Enc (K, U, D, 0{ }n
di iT = ): is a probabilistic algorithm run by the data 

owner U. It inputs the secret key K, the pair of keys U, the documents set D = (D1,···, 
Dn) and n+1 unredeemed transactions Td0, …, Tdn, and outputs n+1 transactions T = 
{T1,···,Tn}, Inx. Besides, the data owner needs to store the identifier TXInx of transaction 
Inx locally. 

(c) t← Trpdr (K, w, U, TXInx, Tw): It is a determinate algorithm, which is run by the data 
owner U. The inputs are the secret key K, the pair of keys U, keyword w, identifier 
TXInx and an unredeemed transaction Tw.  The output is a transaction t, whose receiver is 
either U or the server S. 

(d) s/p← Search (T, Inx, TXInx ,t, S/U): It is run either by the server S or the data owner U. 
If the server S can provide correct search results, it needs to take T, Inx, TXInx , t, S as 
input, and outputs a transaction s. Otherwise, the data owner inputs U and t to output a 
transaction p, which can be used to redeem transaction t. 

(e) {Dij}← Dec (K, s): It is a decryption algorithm run by the data owner U. The inputs are 
the secret key K and the transaction s, and it outputs the plaintexts {Dij} locally. 

A SSE-on-BC scheme is correct if for all k∈N, for all K, U, S output by Gen(1k), for all data 
D 2∆⊆ , for all (T, Inx, TXInx) output by Enc(K, U, D, 0{ }n

di iT = ), for all keyword w∈∆ , such 
that 

Search (T, Inx, TXInx , Trpdr(K, w, U, TXInx, Tw), S)=s∧Dec(K, s)= {Dij}, for 1≤ i≤n.    (1) 
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3.2 Security Definition 
A secure SSE-on-BC scheme should satisfy the following conditions. 

 The server S cannot derive any useful information about the plain data when it accesses to 
the blockchain for the first time; 

 After search, in addition to the search results, the server S also cannot get any useful 
information about plaintexts and keywords. 

 If the server S cannot return the right search results to the data owner U, it cannot redeem 
the transaction t created by the data owner U.  

Re ( )Aal k∏  
(K, U, S)← Gen (1k) s1←Search(T, Inx, TXInx,

1wt , S) 

(D, stA) ←A0 (1k) for 2≤ i≤q, 

0{ }n
di iT =  ←A0 (stA ,{UTXO}) (wi, stA) ←Ai (stA, T, Inx, TXInx, 

1wt ,, 
1iwt −

) 

( 1{ }n
i iT = ,Inx, TXInx) ←Enc(K,U,D, 0{ }n

di iT = ) 
iwT ←Ai (stA, {UTXO}) 

Let T=(T1,···,Tn) 
iwt ←Trpdr(K, wi, U, TXInx, 

iwT ) 

(w1, stA) ←A1 (stA, T, Inx, TXInx) si ←Search(T, Inx, TXInx,
iwt , S) 

1wT ←A1 (stA, {UTXO}) Let Tr = (
1wt ,,

qwt ), TS = (s1,,sq) 

1wt ←Trpdr(K, w1, U, TXInx, 
1wT ) Output V=(Inx, T, Tr, TS) and stA 

Fig. 4. Game Re ( )Aal k∏ . 
Adversary either is adaptive or non-adaptive. When the adversary is adaptive, it can select 

keyword based on the previous keywords and search results. When the adversary is 
non-adaptive, it should choose all the keywords at once. In this paper, we only consider the 
former. 
Definition 2. Let Π=(Gen, Enc, Trpdr, Search, Dec) denote a SSE-on-BC scheme, L be a 
leakage function that is parameterized by access pattern, search pattern and size pattern 
defined in [3], k be the security parameter. Considering the following games Re ( )Aal kΠ and 

, ( )A SIdeal kΠ  shown in the Fig. 4 and 5. 

, ( )A SIdeal kΠ  
(D, stA) ←A0 (1k) for 2 ≤  i  ≤ q, 

0{ }n
di iT = ←A0 (stA ,{UTXO}) (wi, stA) ←Ai (stA, T, Inx, TXInx, 

1wt ,, 
1iwt −

) 

( 1{ }n
i iT = , Inx, TXInx) ←S0(L(D), 0{ }n

di iT = ) 
iwT ←Ai (stA, {UTXO}) 

Let T=(T1,···,Tn) ( ,
iwt  stS)←Si (stS, L(D,w1,, wi), 

iwT ) 

(w1, stA) ←A1 (stA, T, Inx, TXInx) (si, stS)←Si (stS, L(D, 
iwt  , Inx, TXInx)) 

1wT ←A1 (stA, {UTXO}) Let Tr = (
1wt ,, 

qwt ), TS = (s1,,sq) 

(
1wt ,stS)←S1 (stS, L(D,w1), 

1wT ) Output V=(Inx, T, Tr, TS) and stA 

(s1, stS)←S1 (stS, L(D, 
1wt , Inx, TXInx))  

Fig. 5. Game , ( )A SIdeal kΠ . 
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We say a SSE-on-BC scheme is adaptively semantically secure if for all polynomial size 
adversaries A=(A0, A1,, Aq) where q=poly(k), there exists a non-uniform polynomial size 
simulator S=(S0, S1,, Sq), such that for all polynomial size D, 
|Pr[D(V, stA)=1: (V, stA) ← Re ( )Aal kΠ ] - Pr[D(V, stA)=1:(V, stA) ← , ( )A SIdeal kΠ ] | ≤ neg(k),    (2) 
where the probabilities are taken over the coins of Gen and Enc. 

4. The detailed scheme 
Since the size of each block on the blockchain is limited, we should consider the size of the 
data before uploading. To solve this problem, we present two concrete constructions  in this 
section. 

4.1 A SSE-on-BC scheme supports lightweight data 
Suppose the size of data array D=(D1,···, Dn) is small. In order to upload them on the 
blockchain, the data owner U will do the following steps: 
(a) Gen: After inputting a security parameter k, the data owner U gets a secret key array K= 

(K1,K2), where Ki ← {0,1}k (i =1, 2). Besides, the data owner U and the server S generate 
a pair of keys U= (U.sk,U.pk) =(u1,gu1) and a pair of keys S= (S.sk,S.pk) = (s1,gs1) 
respectively, where u1,s1∈Zp and gu1, gs1∈G. 

(b) Enc: For each document Dj (1 ≤ j ≤ n), the user computes:  
                                           Ci = ε.Enc(K1, Di) (i =1,,n),                                              (3) 
He then selects an empty set DB(wi) for each keyword wi∈W (i =1,,m). If document Dj 
(1 ≤ j ≤ n) contains keyword wi, he puts Cj into DB(wi). To make readers understand 
clearly, suppose Δi=|DB(wi)|, and DB(wi)={ 1iC , ,

iiC ∆ }. He continues to compute: 

                                                           1 2( , ),
iw it F K w=                                                    (4) 

                                                         2 2( , ),
iw il F K w=                                                              (5) 

                                                        
iwk =F3(K2,wi) ,                                                        (6) 

                                               
iwh =H(

iwk , 1iC ||||
iiC ∆ ).                                                (7) 

In order to store the ciphertext Ci (i =1,,n) on the blockchain, he finds n unredeemed 
transactions TXD01,,TXD0n from his own wallet, which contain d1,, dn amount of coins 
respectively. He then builds transactions 

iDTX  (i =1,,n) in the following manner: 

1) For transaction 
iDTX , he embeds Ci (i =1,,n) into its out-script. Then he uses 

transaction TXD0i to compute the body value of transaction 
iDTX . 

2) Sign transaction 
iDTX by using his private key U.sk, which is broadcasted to the 

blockchain. 
3) If the transactions

1DTX ,,
nDTX appear on the blockchain, the data owner U 

computes 
iDTXID =H1( iDTX )(i =1,,n), which are seen as the identifiers of 

transactions 
1DTX ,,

nDTX  respectively. 

For each keyword wi (i =1,,m), if Cj ∈DB(wi), he replaces Cj with 
jDTXID (1≤ j≤ n, i 

=1,,m). 
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Let Δ=
1
max

i m≤ ≤
{Δi}. If Δi <Δ, he pads DB(wi) with Δ-Δi elements 0p such that |DB(wi)| = Δ, 

where i=1,,m. Here, we still use symbol DB(wi) to represent the result after padding. 
He chooses an empty array I. For each keyword wi∈W, he computes: 

                       
                                                  

iwe =δ.Enc(
iwl , DB(wi))                                                  (8) 

He stores ( , , )
i i iw w wt e h  into array I in a lexicographical manner. 

To generate a transaction Inx for documents D, the data owner U does: 
1) Find an unredeemed transaction TX0 from his wallet, which contains d0 coins. 
2) For transaction Inx, he embeds I into its out-script.  
3) Take transaction TX0 as input, and compute the body of transaction Inx. 
4) Sign transaction Inx by using U.sk, and broadcasts it on the blockchain. 

After it appears on the blockchain, he computes its identifier TXInx=H1(Inx) and stores it 
locally, otherwise he needs to recreate transaction Inx. 

Suppose Φ(,) is a function, which consists of a decryption algorithm and a 
verification algorithm. It takes two strings x, y as input. It then executes: 
1) Use y to find the transaction q. 
2) Decrypt the information that embedded in transaction q by using x. Suppose the 

decryption results are (α, β). 

3) Inputs  α, β and x, and it will verify whether β
?
=  H(x, α) holds or not. If it does, it will 

outputs α,1, where 1 is a Boolean value. Otherwise it outputs a termination 
symbol⊥ . 

(c) Trpdr: When U wants to find the data containing the keyword w, he will create a 
transaction ask shown in Fig. 6. The concrete construction is as follows: 
1) Find an unredeemed transaction Tq from his wallet, which contains dt coins. 
2) Compute tw = F1 (K2, w), lw = F2 (K2, w) and kw = F3 (K2, w), the data owner U then puts 

Φ((tw, lw, kw), TXInx) into the out-script of ask. 
3) Use Tq to compute the body of ask. 
4) Inputting transaction ask, the data owner U and server S compute the body of 

transaction Fuse respectively. Here, it has a time lock t in the transaction Fuse. 
5) The server S signs the transaction Fuse by using S.sk, and sends it to U to let him add 

his own signature in it. 
6) After signing the transaction ask by using U.sk, the data owner U broadcasts it. 
7) If transaction ask does not appear on the blockchain until time t-maxU, the data owner 

U can redeem transaction Tq by using his private key, and quits the protocol 
immediately. Here, the symbol maxU means the maximal possible delay time of 
transaction Tq appares on the blockchain. 
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Fig. 6. How to get the lightweight data containing keyword w. 
 

(d) Search: When the server S wants to redeem the transaction ask, it needs to bulid a 
transaction return shown in Fig. 6, which contains the information of the search results. 
The concrete process is as follows: 
1) Input transaction ask, and compute the body of transaction return.  
2) Run function Φ((tw, lw, kw), TXInx): 

i. Use TXInx to get the information I embedded in the transaction Inx. 
ii. Use tw to find (ew, hw), which is stored in I. 

iii. Decrypt ew by using lw: DB(w) = δ.Dec(lw, ew). For brevity, let we use 

1 2
( ) { , ,

l lD DDB w TXID TXID= ,
ln

DTXID } to denote the decryption results, where 

1( )
l lj j

D DTXID H TX=  ( j=1,,n) denotes the identifier of transaction
l jDTX  

(j=1,,n). 
iv. Read the document ciphertext

jlC from transaction
l jDTX by using

jlDTXID ( j =1, 

,n). 
3) Verify whether the equation 

1
( ,C ||w lH k …|| C )

nl wh= holds or not. If it holds, it puts 

{
jlC } into the in-script of transaction return. 

4) Sign transaction return, and broadcast it onto the blockchain. 
(e) Dec: After transaction return appearing on the blockchain, the data owner U can read 

{
jlC } from it. He continues to do: 1. , )(

jj llD CEnc Kε= (1≤ j≤ n). If the transaction return 
does not appear on the blockchain after time t, he will broadcast transaction Fuse and gets 
his money back. 

4.2 A SSE-on-BC scheme supports the Data with big size 
If the scale of data is larger, we should deal with it before uploading it. Suppose the data owner 
U' has n documents D1,···, Dn, whose size is larger. In order to store them on the blockchain, he 



5570                                                              Li et al.: How to retrieve the encrypted data on the blockchain 

will do: 
a) Gen: It inputs the security parameter k, and outputs a secret key array K= (K1,K2), where 

Ki ← {0,1}k (i =1, 2). Besides, the data owner U' and the server S generate a pair of keys 
U= (U'.sk,U'.pk) =(u1,gu1) and a pair of keys S= (S.sk,S.pk) = (s1,gs1) respectively, where 
u1,s1∈Zp and gu1, gs1∈G. 

b) Enc:  The data owner U' encrypts documents D=(D1,···, Dn) by using the secret key K1:  
                                                Ci=ε.Enc(K1, Di) (i =1,, n).                                          (9) 
1) If |Ci| > ι-p: 

He divides Ci into s blocks 1iC′ , 2iC′ ,, isC′ such that | |ijC p i′ + ≤ , where 
| |iC

s
pi

=
−

 
  

, 

j = 1,…, s. 
For each keyword wi∈W (i =1,,m), he chooses an empty set d(wi) and assigns elements 
to it in this way: If document Dj (1 ≤ j ≤ n) contains keyword wi, he puts Cj into d(wi). 
Suppose d(wi)={ 1iC , ,

iiC ∆ }. He computes: 

                                                           1 2( , ),
iw it F K w=                                                 (10) 

                                                         2 2( , ),
iw il F K w=                                                            (11) 

                                                       
iwk =F3(K2,wi) ,                                                          (12) 

                                               
iwh =H(

iwk , 1iC ||||
iiC ∆ ).                                              (13) 

He finds s unredeemed transactions 
10iDTX ′ ,, 0isDTX ′  from his wallet, which contain 

di1,···,dis amount of coins respectively, and builds transactions 
ikDTX ′  (k =1,, s ) as 

follows: 
For k =1:  

i. Embed 1 0 p
iC′‖  into the out-script of transaction 

1iDTX ′ . 

ii. Take transaction 
10iDTX ′ as input, and compute the body of transaction 

1iDTX ′ . 

iii. Sign transaction 
1iDTX ′ by using U'.sk, and broadcast it onto the blockchain. 

iv. After transaction 
1iDTX ′ appears on the blockchain, he computes its 

identifier
1 11( )

i iD DTXID H TX′ ′= . 
For 2 ≤ k≤ s: 

i. In the out-script of transaction 
ikDTX ′ , he embeds information 

( 1)i kik DC TXID
−′′‖ . 

ii. Take 0ikDTX ′ as input, and compute the body of transaction 
ikDTX ′ . 

iii. Sign it by using U'.sk, and broadcast it to the blockchain. 
iv. If the transaction 

ikDTX ′ appears on the ledger, he computes its corresponding 

transaction identifier 1( )
ik ikD DTXID H TX′ ′= . 

2) When |Ci|≤ ι-p (1≤ i ≤ n), he finds an unredeemed transaction TXD0i from his wallet, 
which contains di coins. He then builds a transaction 

iDTX as follows: 

i. In the out-script of transaction 
iDTX , he embeds information Ci. 

ii. Inputting transaction TXD0i , he computes the body of transaction 
iDTX . 
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iii. Sign it by using U'.sk, and broadcast it on the blockchain. 
iv. After it appears on the blockchain, he computes its identifier 

1( )
i iD DTXID H TX= . 

For each keyword wi (1≤ i ≤ m), he assigns an empty set DB(wi).  He assigns elements to 
it in the following way: 

i. If 
ji iw D∈ and| |

jiC pi> − , he puts 
i jD sTXID ′  into the set DB(wi). 

ii. If 
ji iw D∈  and| |

jiC pi≤ − , he puts 
i jDTXID  into the set DB(wi). 

Suppose Δi=|DB(wi)|, and let Δ=
1
max

i m≤ ≤
{Δi}. If Δi <Δ, he pads the set DB(wi) with Δ-Δi  

elements 0p such that |DB(wi)| = Δ, where i=1,,m. 
He continues to do: 
                                                      

iwe =δ.Enc(
iwl ,DB(wi)),                                            (14) 

For w1, he generates a transaction 
1IwTX as follows: 

i. He finds an unredeemed transaction TXIw10 from his wallet, which contains dw10 
coins. 

ii. Compute K11= F2(K2,0p) and 
1 1 11 11. ( , 0 )p

w w wr Enc K t e hδ= ‖ ‖ ‖ . 

iii. Embed r1 in the out-script of 
1IwTX . 

iv. Take  transaction TXIw10 as input, and compute the body of transaction
1IwTX . 

v. He signs the transaction 
1IwTX , and broadcasts it on the blockchain. 

vi. After it appears on the blockchain, he computes its identifier: 

1 1
( )w IwTI H TX= . 

vii. If transaction 
1IwTX does not appear on the blockchain, the data owner can 

redeem transaction TXIw10 quickly and quits the protocol. 
For wj∈W (2≤ j ≤ m), the data owner builds transaction 

jIwTX as follows: 
i. Find an unredeem transaction TXIj0 from his wallet, which contains dj0 coins. 

ii. Compute K11= F2(K2,0p), and 
111. ( , )

j j j jj w w w wr Enc K t e h TIδ
−

= ‖ ‖ ‖ . 

iii. Embed rj in the out-script of 
jIwTX . 

iv. Input transaction TXIj0 , and compute the body of transaction 
jIwTX . 

v. Sign transaction 
jIwTX  by using U'.sk, and broadcast it on the blockchain. 

vi. If the transaction 
jIwTX  appears on the blockchain, he records its identifier 

1( )=
j jw IwTI H TX . 

vii. If transaction 
jIwTX does not appear on the blockchain, the data owner can 

redeem transaction TXIj0 quickly and quits the protocol. 
The data owner needs to store 

mwTI locally. 
Let Φ(,) be the function defined in section 4.1. 
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c) Trpdr: When finding data that contain the keyword w. He needs to create a transaction ask, 
which is shown in Fig. 7: 
i. Find an unredeemed transaction Tq from his wallet, which contains dt coins. 

ii. Compute tw =F1(K2,w), lw=F2(K2,w), K11=F2(K2,0p) and kw=F3(K2, w). 
iii. Embed Φ(( tw, lw, kw), K11, 

mwTI ) into the out-script of ask. 
iv. To compute the body of transaction ask, he inputs transaction Tq. 
v. Taking the transaction ask as input, for transaction Fuse, the data owner U' and the 

server S compute its body. This transaction Fuse contains a time t. The server S 
signs transaction Fuse and sends it to U'. 

vi. After signing the transaction ask, the data owner U' broadcasts it. 
vii. After time t-maxU', if the transaction ask does not appear on the blockchain, the data 

owner U' redeems transaction Tq by using his private key and quits the protocol 
immediately, where maxU' is the maximal possible delay of including it in the 
blockchain. 

 
Fig. 7. How to return the documents that contain keyword w. 

 
d) Search: When the server S wants to redeem the transaction ask as shown in Fig. 7, it does: 

1) Take transaction ask as input, and compute the body of transaction return 
transaction. 

2) Run the function Φ( tw, lw, kw,K11, 
mwTI ): Firstly, it uses 

mwTI to get the 

information rm from transaction 
mIwTX . It then computes || || ||

m m mw w wt e h  

1 11. ( , )
mw mTI Dec K rδ
−
= . Next, it will do: 

- If =
mw wt t , it continues to do: . ( , )

m m mw w wDB Dec l eδ= . For brevity, let we 

use
1

{
m mw DDB TXID= ,, }

mDTXID
D

 to denote the decryption results. It then 

finds ciphertext Ci by using (1 )
miD iTXID ≤ ≤ D : 

i. In the transaction 
miDTX , if it contians 

imC , it outputs it. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 11, November 2019                            5573 

ii. If the information is
( 1)i m sim s DC TXID
−′′ ‖  in the transaction 

miDTX , it 

firstly outputs
im sC′ , and then uses identifier 

m jiDTXID ′  to get the 

information 
im jD′ ( j=s-1,···, 1) from transaction 

m jiDTX ′ ( j=s-1,···, 1). 

Lastly, it sets 1i im mC C′= ‖
im sC′‖ . 

- If ≠
mw wt t , it continues to use transaction identifier 

−m jwTI  to read information 

rm-j (j=1,···, m-1) from transaction 
m jIwTX
−

 (j= 1,···, m-1). If 
−
=

m jw wt t  holds, it 
stops. That is to say, he does: 

i. Decrypt 
1 11. ( , )

m j m j m j m jw w w w m jt e h TI Dec K rδ
− − − − − −=‖ ‖ ‖ , 

ii. Verify 
?

−
=

m jw wt t . If this equation holds, he uses the above method to 

decrypt 
−m jwDB  to get {Cl1,,Cln}. If it does not hold, he continues to 

read the information rm-j-1 embedded in the transaction
1− −m jIwTX until 

−
=

m jw wt t  holds. 
3) Embed the ({Cl1,,Cln}, hw) into the out-script of transaction return. 
4) After signing the transaction return, he broadcasts it. 

 
e) Dec: After the transaction return appears on the blockchain, the data owner U recovers 

{
jlC } from it. He continues to compute 1. , )(

jj llD CEnc Kε=  (1≤ j≤ n). After time t, if the 
transaction return still does not appear on the blockchain, he will broadcast transaction 
Fuse to get  his money back. 

5. Security and Performance Analysis 
The idea of the scheme presented in section 4.1 is similar to that in section 4.2. The difference 
between them is that the latter needs to divide documents into blocks before uploading them 
on the blockchain. When search, the server needs to find all the appropriate blocks and merge 
them together. Here, we only present performance analysis and security analysis for the first 
scheme. For the second scheme, readers can derive them by themselves. 

5.1 Performance 
Our computer configuration is Intel(R) Xeon(R) CPU E3-1230 v5 @ 3.40GHz , 32GB 
memory. We simulate our scheme on the Fabric with version number 1.4, which is stable. We 
create an orderer server, three organizations on it, and each organization has two peer nodes. 
That is to say, we build 6 peer nodes in the blockchain network. The size of the block is set to 
be 99MB. It takes about 2s to generate a block. We instantiate the pseudorandom functions F1, 
F2, F3 with HMAC-SHA256, the hash function H and H1with HMAC-SHA256, and SE 
schemes ,δ ε with AES in the CBC mode with a 256 bit key. We sample 9411 RFC files 
(400MB) from the IETF website (https://www.ietf.org/rfc/) and extract 600 keywords 
randomly. We then transform them in the form of array (keyword, file). The number of test data 
ranges from 1000 to 105. 

https://www.ietf.org/rfc/
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To show the efficiency of our scheme, we will elaborate from the following points: 
Setup time. It mainly means the time used to generate an invertible index. The time begins 

after the documents are uploaded to the blockchain, and ends after the index I appears on the 
blockchain. The Fig. 8 shows the time to create an index for files with different scales. It is 
easy to get that as the size of the data grows, the time of creating an index is increasing. 

Search time. This time includes the search token generation time of the keyword w, the 
time it takes to create a smart contract, and the time to find the files containing keyword w. 
Because the transaction ask contains a functionΦ , we can use a smart contract to simulate it. 
In this smart contract, it contains decryption algorithm, for loop algorithm, and hash 
verification. Fig. 9 shows the result after it is created on the Fabric. 
When searching the data containing the keyword w, the server needs to provide the 

transaction return to complete it. We simulate it by invoke the smart contract that we built 
above. As shown in Fig. 10, we give its search time respectively under different scales of data. 

 

 
Fig. 9. The information about the smart contract 

 

 
 
 
 
Table 1. Comparison between verifiable SSE schemes. The n denotes the total number of files, m 
denotes the number of transactions, d(w) denotes the number of the files containing the keyword w. 

scheme computation 
cost 

communication 
cost 

Fully against malicious adversary 

[25] O(n) O(d(w)) No 
[26] O(n+r) O(d(w)) No 
our scheme O(m) O(d(w)) Yes 

 
Table 2 is a comparison result between our SSE-on-BC scheme with other works. Let n denote 
the number of files need to be uploaded in the cloud server, m, the number of the transactions 
used to store n files on the blockchain, r, the size of indistinguishability obfuscation, and d(w), 
the number of files containing the keyword w. As shown in it, schemes [25] is optimal. 

Fig. 10. The time it takes to finish a search 
on the data with different sizes. The 

symbol w represents a keyword, D denotes 
a file. 

Fig. 8. The time it takes to create an index 
for data with different scales. The symbol w 

represents a keyword, D denotes a file. 
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However, it cannot resist fully malicious adversary, as well as scheme [26]. Though our 
scheme store files in the form of transaction, the size of each transaction is nearly equal to the 
size of the ciphertext which is stored in the transaction. That is to say, our schemes is also 
optimal. 
 

5.2 Security Analysis 
In this section, we give its security proof of our first scheme. 
Theorem 1. If F1, F2, F3 are pseudorandom functions, H and H1 are collision resistant hash 
function, and ε = (ε.Enc, ε.Dec) is PCPA-secure symmetric encryption scheme, then the 
scheme we present in section 4.1 is adaptively IND-CKA2 secure. 

Proof. Let we construct a PPT simulator 0 1{ , ,..., }qS S S S= such that, for an adversary 

0 1{ , ,..., }qA A A A= , the output of , ( )A SIdeal kΠ  and Re ( )Aal kΠ  is computationally 
indistinguishable. 

Suppose the simulator S  can get access to the trace of a history 1(| |L T= ,, 

| |,| |, ( ))n wT Inx TXτ  where ( )wTXτ  denotes the search pattern and the access pattern about 

keyword w. It then generates * *
1( ,Inx T ,, * * *, , )nT Tr TS and creates transaction ask* as 

follows: 
i. Simulating *

1T ,, *
nT . 

If q=0, it can set 1| |*
1 {0,1}CC ← ,, | |* {0,1} nC

nC ← . 
Because the encryption algorithm ( . , . )ε ε ε= Enc Dεc  is PCPA-secure, it means that 

*
1C ,, *

nC are computationally indistinguishable from 1C ,, nC coming from the 

Re ( )Aal kΠ  game. Moreover, the adversary A  does not have the private key, therefore, it 

cannot create valid transactions *
1T ,, *

nT  which embeds *
1C ,, *

nC  respectively. If it 
asks the simulator S  to sign these transaction, it will result in the transactions 

*
1T ,, *

nT are computationally indistinguishable from the transactions T1, ···, Tn that 

generated in the ( )AReal kΠ  game. 
ii. Simulating Inx*. 

If q=0, S sets * {0,1}← k
wt , * *{0,1} , {0,1}← ←k k

w we h . Therefore, the tw, ew, hw 
output by Enc are computationally indistinguishable from  t* 

w, e* 
w, h* 

w. 
If q≥1, S selects * *,{0,1} {0,1}

q q

k k
w wl k← ← , and does * *. ( ,

q qw we Enc lδ=  *( ))qDB w , 
* * *

1( ,
q q qw w wh H k C= ‖  * )

qw nC‖ . Because 2 3,F F are pseudorandom functions, the 
* *( , )

q qw we h  is computationally indistinguishable from ( , )
q qw we h  generated from the step 

Enc. 
Because function F1 is pseudorandom, the

qwt output by Enc is computationally 

indistinguishable from *
qwt which is choosed at random from{0,1}k . 

Therefore, *Inx is computationally indistinguishable from Inx. 
 



5576                                                              Li et al.: How to retrieve the encrypted data on the blockchain 

iii. Simulating *Tr . 
In the transaction *Tr , it embeds *

wt  and TXinx. Because TXinx is broadcasted to each 

other, A can get it easily. Here we only consider *
wt  is indistinguishable from tw. It uses 

the pseudorandom function F1 to generate tw for keyword w in the step Trpdr in the 
section 4.1, and tw is indistinguishable from * {0,1}← k

wt  that S chooses at random. 

Therefore, *Tr is computationally indistinguishable from Tr. 
iv. Claiming the transaction ask by using transaction s. 

When q=0, if A wants to get the money from the transaction *s . S returns 

1({ iC ,, }, )in wC h  to A , where {0,1}k
ijC ←  (j=1,···,n) and {0,1}← k

wh . 

    When 1≥q , S firstly returns 1({ wqC ,, })wqnC  to A , where wqjC  (j=1,···,n) is the 

history of access pattern about keyword wq. S then sets * {0,1}←
q

k
wk  and computes 

* *
1( ,

q qw w wqh H k C= ‖ )wqnC‖  which will be sent to A . Because F3 is a pseudorandom 

function, therefore the transaction s that A  creates cannot claim the money from 
transaction ask. 

6. Conclusion 
This paper provided a search method for encrypted data on the blockchain, and constructed 
two concrete search algorithms based on the size of data. We also give its security and 
performance analyses. Compared to the existing SSE schemes, our scheme can automatically 
resist malicious adversary. In addition, the server only needs to find the document transactions 
which are related to the keyword w, therefore, our search complexity is sub-linear with the 
total number of documents. Since our scheme can better protect the privacy and integrity of 
data, it can be applied in many industries, such as medical healthcare, insurance and finance. 

At present, the blockchain is still in its infancy, and it only supports static data. Therefore, 
how to design a scheme supports data update and search on it is very interesting. This is also 
our next work. 
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