DOI QR코드

DOI QR Code

Objective Assessment of Visual Quality and Ocular Scattering Based on Double-pass Retinal Images in Refractive-surgery Patients and Emmetropes

  • Received : 2019.08.09
  • Accepted : 2019.11.12
  • Published : 2019.12.25

Abstract

This study was performed to evaluate objective visual quality and ocular scattering in myopic refractive-surgery patients, compared to emmetropes. Optical vision-quality parameters (modulation transfer function (MTF) cutoff and Strehl ratio) and objective scattering index (OSI) were measured using an optical quality analysis system (OQAS II) based on the double-pass technique. In all subjects, the higher the MTF cutoff and Strehl ratio, the lower the OSI and ocular higher-order aberrations (HOAs). The MTF cutoff and Strehl ratio for the laser-assisted subepithelial keratectomy (LASEK) group were lower than those for the emmetropia group, while the OSI, ocular HOAs, and spherical aberration (SA) for the LASEK group were higher than those for emmetropia group. Ocular scattering would be one of the important factors in regard to visual quality. Therefore, the quality of the retinal image in the LASEK patients has been shown to reduce the quality of vision more than in the emmetropes.

Keywords

References

  1. D. P. Pinero, D. Ortiz, and J. L. Alio, "Ocular scattering," Optom. Vis. Sci. 87, E682-E696 (2010). https://doi.org/10.1097/opx.0b013e3181e87da6
  2. M. Mrochen, and V. Semchishen, "From scattering to wavefronts - what's in between?" J. Refract. Surg. 19, S597-S601 (2003).
  3. M. J. Costello, S. Johnsen, K. O. Gilliland, C. D. Freel, and W. C. Fowler, "Predicted light scattering from particles observed in human age-related nuclear cataracts using Mie scattering theory," Invest. Ophthalmol. Vis. Sci. 48, 303-312 (2007). https://doi.org/10.1167/iovs.06-0480
  4. M. Vilaseca, F. Diaz-Douton, S. O. Luque, M. Aldaba, M. Arjona, and J. Pujol, "Optics of astigmatism and retinal image quality," in Astigmatism-Optics, Physiology and Management, M. Goggin, ed. (InTech, Croatia, 2012), Chapter 3, pp. 46.
  5. D. R. Williams, D. H. Brainard, M. J. McMahon, and R. Navarro, "Double-pass and interferometric measures of the optical quality of the eye," J. Opt. Soc. Am. A 11, 3123-3135 (1994). https://doi.org/10.1364/JOSAA.11.003123
  6. F. Diaz-Douton, A. Benito, J. Pujol, M. Arjona, J. L. Guell, and P. Artal, "Comparison of the retinal image quality with a Hartmann-Shack wavefront sensor and a double-pass instrument," Invest. Ophthalmol. Vis. Sci. 47, 1710-1716 (2006). https://doi.org/10.1167/iovs.05-1049
  7. E. Logean, E. Dalimier, and C. Dainty, "Measured doublepass intensity point-spread function after adaptive optics correction of ocular aberrations," Opt Express 16, 17348-17357 (2008). https://doi.org/10.1364/OE.16.017348
  8. P. Rodriguez and R. Navarro, "Double-pass versus aberrometric modulation transfer function in green light," J. Biomed. Opt. 12, 044018 (2007). https://doi.org/10.1117/1.2756539
  9. A. Saad, M. Saab, and D. Gatinel, "Repeatability of measurements with a double-pass system," J. Cataract. Refract. Surg. 36, 28-33 (2010). https://doi.org/10.1016/j.jcrs.2009.07.033
  10. M. Vilaseca, M. Arjona, J. Pujol, L. Issolio, and J. L. Guell, "Optical quality of foldable monofocal intraocular lenses before and after injection: comparative evaluation using a double-pass system," J. Cataract. Refract. Surg. 35, 1415-1423 (2009). https://doi.org/10.1016/j.jcrs.2009.03.022
  11. H. Miao, M. Tian, L. He, J. Zhao, X. Mo, and X. Zhou, "Objective optical quality and intraocular scattering in myopic adults," Invest. Ophthalmol. Vis. Sci. 55, 5582-5587 (2014). https://doi.org/10.1167/iovs.14-14362
  12. J. L. Guell, J. Pujol, M. Arjona, F. Diaz-Douton, and P. Artal, "Optical quality analysis system: instrument for objective clinical evaluation of ocular optical quality," J. Cataract Refractive Surg. 30, 1598-1599 (2004). https://doi.org/10.1016/j.jcrs.2004.04.031
  13. M. Vilaseca, A. Padilla, J. Pujol, J. C. Ondategui, P. Artal, and J. L. Guell, "Optical quality one month after Verisyse and Veriflex phakic IOL implantation and Zeiss MEL 80 LASIK for myopia from 5.00 to 16.50 diopters," J. Refract. Surg. 25, 689-698 (2009). https://doi.org/10.3928/1081597X-20090707-03
  14. M. Vilaseca, A. Padilla, J. C. Ondategui, M. Arjona, J. L. Guell, and J. Pujol, "Effect of laser in situ keratomileusis on vision analyzed using preoperative optical quality," J. Cataract. Refract. Surg. 36, 1945-1953 (2010). https://doi.org/10.1016/j.jcrs.2010.05.029
  15. J. A. Martinez-Roda, M. Vilaseca, J. C. Ondategui, A. Giner, F. J. Burgos, G. Cardona, and J. Pujol, "Optical quality and intraocular scattering in a healthy young population," Clin. Exp. Optom. 94, 223-229 (2011). https://doi.org/10.1111/j.1444-0938.2010.00535.x
  16. P. Artal, A. Benito, G. M. Perez, E. Alcon, A. De Casas, J. Puiol, and J. M. Marin, "An objective scatter index based on double-pass retinal images of a point source to classify cataracts," PLoS ONE 6, e16823 (2011). https://doi.org/10.1371/journal.pone.0016823
  17. J. S. McLellan, P. M. Prieto, S. Marcos, and S. A. Burns, "Effects of interactions among wave aberrations on optical image quality," Vision Res. 46, 3009-3016 (2006). https://doi.org/10.1016/j.visres.2006.03.005
  18. J. R. Jimenez, C. Ortiz, E. Hita, and M. Soler, "Correlation between image quality and visual performance," J. Mod. Opt. 55, 783-790 (2008). https://doi.org/10.1080/09500340701467637
  19. K. Lee, J. M. Ahn, E. K. Kim, and T. I. Kim, "Comparison of optical quality parameters and ocular aberrations after wavefront-guided laser in-situ keratomileusis versus wavefront-guided laser epithelial keratomileusis for myopia," Graefe's Arch. Clin. Exp. Ophthalmol. 251, 2163-2169 (2013). https://doi.org/10.1007/s00417-013-2356-x
  20. E. Moreno-Barriuso, J. M. Lloves, S. Marcos, R. Navarro, L. Llorente, and S. Barbero, "Ocular aberrations before and after myopic corneal refractive surgery: LASIK-induced changes measured with laser ray tracing," Invest. Ophthalmol. Vis. Sci. 42, 1396-1403 (2001).
  21. T. Kohnen and J. Buhren, "Corneal first-surface aberration analysis of the biomechanical effects of astigmatic keratotomy and a microkeratome cut after penetrating keratoplasty," J. Cataract. Refract. Surg. 31, 185-189 (2005). https://doi.org/10.1016/j.jcrs.2004.09.048
  22. G. D. Kymionis, N. Tsiklis, A. I. Pallikaris, D. I. Bouzoukis, and I. G. Pallikaris, "Fifteen-year follow-up after LASIK: case report." J. Refract. Surg. 23, 937-940 (2007). https://doi.org/10.3928/1081-597x-20071101-13
  23. J. Wang, J. Thomas, and I. Cox, "Corneal light backscatter measured by optical coherence tomography after LASIK," J. Refract. Surg. 22, 604-610 (2006). https://doi.org/10.3928/1081-597x-20060601-14
  24. S. Jain, J. M. Khoury, W. Chamon, and D. T. Azar, "Corneal light scattering after laser in situ keratomileusis and photorefractive keratectomy," Am. J. Ophthalmol. 120, 532-534 (1995). https://doi.org/10.1016/S0002-9394(14)72672-8
  25. J. R. Jimenez, R. G. Anera, L. J. Del Barco, and L. Carretero, "Retinal image quality in myopic subjects after refractive surgery," J. Mod. Opt. 47, 1587-1598 (2000). https://doi.org/10.1080/095003400405028
  26. J. T. Holladay and J. A. Janes, "Topographic changes in corneal asphericity and effective optical zone after laser in situ keratomileusis," J. Cataract. Refract. Surg. 28, 942-947 (2002). https://doi.org/10.1016/S0886-3350(02)01324-X
  27. S. Marcos, "Aberrations and visual performance following standard laser vision correction," J. Refract. Surg. 17, S596-S601 (2001). https://doi.org/10.3928/1081-597X-20010901-19
  28. J. J. Vos, "Disability glare-a state of the art report," CIE J. 3, 39-53 (1984).
  29. T. J. V. D. Berg, "On the relation between glare and straylight," Doc. Ophthalmol. 78, 177-181 (1991). https://doi.org/10.1007/BF00165678
  30. T. J. V. D. Berg, L. Franssen, and J. E. Coppens, "Straylight in the human eye: testing objectivity and optical character of the psychophysical measurement," Ophthalmic Physiol Opt. 29, 345-350 (2009). https://doi.org/10.1111/j.1475-1313.2009.00638.x
  31. T. Tanabe, K. Miyata, T. Samejima, Y. Hirohara, T. Mihashi, and T. Oshika, "Influence of wavefront aberration and corneal subepithelial haze on low-contrast visual acuity after photorefractive keratectomy," Am. J. Ophthalmol. 138, 620-624 (2004). https://doi.org/10.1016/j.ajo.2004.06.015
  32. N. Yamane, K. Miyata, T. Samejima, T. Hiraoka, T. Kiuchi, F. Okamoto, Y. Hirohara, T. Mihashi and T. Oshika, "Ocular higher-order aberrations and contrast sensitivity after conventional laser in situ keratomileusis," Invest. Ophthalmol. Vis. Sci. 45, 3986-3990 (2004). https://doi.org/10.1167/iovs.04-0629
  33. R. G. Anera, J. R. Jimenez, L. J. D. Barco, J. Bermudez, and E. Hita, "Changes in corneal asphericity after laser in situ keratomileusis," J. Cataract. Refract. Surg. 29, 762-768 (2003). https://doi.org/10.1016/S0886-3350(02)01895-3
  34. R. Navarro, P. Artal, and D. R. Williams, "Modulation transfer of the human eye as a function of retinal eccentricity," J. Opt. Soc. Am. A 10, 201-212 (1993). https://doi.org/10.1364/JOSAA.10.000201
  35. T. J. Van den Berg, "Importance of pathological intraocular light scatter for visual disability," Doc. Ophthalmol. 61, 327-333 (1986). https://doi.org/10.1007/BF00142360