
1734

슈퍼스칼라 프로세서를 위한 고성능 하이브
리드 동적 분기 예측

Hybrid Dynamic Branch Prediction to
Reduce Destructive Aliasing

Jongsu Park*

*Staff Engineer, System LSI Division, Samsung Electronics,
Hwaseong, 18448 Korea

ABSTRACT

This paper presents a prediction structure with a Hybrid
Dynamic Branch Prediction (HDBP) scheme which
decreases the number of stalls. In the application, a branch
history register is dynamically adjusted to produce more
unique index values of pattern history table (PHT). The
number of stalls is also reduced by using the modified
gshare predictor with a long history register folding
scheme. The aliasing rate decreased to 44.1% and the miss
prediction rate decreased to 19.06% on average compared
with the gshare branch predictor, one of the most popular
two-level branch predictors. Moreover, Compared with the
gshare, an average improvement of 1.28% instructions per
cycle (IPC) was achieved. Thus, with regard to the
accuracy of branch prediction, the HDBP is remarkably
useful in boosting the overall performance of the superscalar
processor.

Keywords : Branch, Dynamic Prediction, Branch History,

Prediction Accuracy

Ⅰ. Introduction

The most recent studies on high performance
superscalar processor architecture focused on implementing
deeper pipelining, instruction prefetching, multiple
issuing, and dynamic scheduling to improve performance

[1,2]. However, we could not obtain the satisfactory
results with these innovations because the misprediction
penalty becomes higher with the usage of deeper
pipelining and the wider issue technique [3]. Better
branch prediction mechanisms are vital to prevent the
flushed cycles caused by misprediction. Therefore, more
accurate branch predictors are required to achieve high
performance. Many studies have been proposed on
two-bit saturating counter and a two-level branch
predictor consisting of one level of PHT whose entries
are also filled with two-bit saturating counter
information [4]. McFarling also proposed a variation of
the global-history two-level predictor called gshare. The
gshare algorithm attempts to make better use of the
index bits by hashing the branch history register (BHR)
and the program counter (PC) to select an entry from the
PHT. The combination of the BHR and PC tends to
contain more information because of the non-uniform
distribution of PC values and branch histories [5].
Recently, tracking data dependency and its application to
branch prediction was proposed in response to the
importance of selecting the optimal history length [6]. In
addition, the Dynamic per Branch History Length
Adjustment (DpBHLA) branch predictor adjusts BHR
length both dynamically and logically [7]. Whenever a
branch instruction is executed, this branch predictor
saves the information in the data dependent history table,
which includes register writing instructions, such as load
or computation instructions. The record is saved in the
branch register dependency table (BRDT), whose entry
stores the key branch information and is equal to the
number of physical registers.

The proposed HDBP scheme adjusts dynamically the
most efficient history length per branch instruction,
which records data dependencies among the branches,

Short Paper
한국정보통신학회논문지 Vol. 23, No. 12: 1734~1737, Dec. 2019

Received 25 November 2019, Revised 29 November 2019, Accepted 29 November 2019

Open Access http://doi.org/10.6109/jkiice.2019.23.12.1734 print ISSN: 2234-4772 online ISSN: 2288-4165

슈퍼스칼라 프로세서를 위한 고성능 하이브리드 동적 분기 예측

1735

decides the optimal length of the global history, and
utilizes a diversely shifted program counter to increase
the index rate of the PHT entries. Furthermore, if the
global history register (GHR) length is longer than the
BRDT width, GHR is folded in half with XOR logic to
make a unique pattern. Thus, a dynamic history length
adjustment predictor, as well as modified gshare
predictor with a long history length, is provided.

Ⅱ. Proposed Architecture

A recent study suggested a dynamic branch predictor
that combined PC and branch history in a dynamic way
because the best history length depends on program
[7-8]. This section presents the HDBP which takes
advantage of both the dynamic branch predictor and the
static predictor. Fig. 1 shows a block diagram of the
HDBP. The HDBP records a basic block execution that
includes register writing instructions at the BRDT.
Therefore, when a register has data dependency with
previously executed basic blocks, the data dependency is
easily recognized by the indexing BRDT. Because a
branch path is judged by a register in the instruction, the

known register’s data dependency allows more accurate
branch prediction. Based on the contents of the BRDT,
the proposed architecture examines how many
determined the number of branch instructions existing
between the current branch instruction and previous
branches that have data dependency with a register in the
current executing branch instruction. After examination,
the proposed architecture chooses BHR bits which are
necessary for branch prediction. First, each BRDT entry
records the correlated information that the latest
computation writes into the related physical register. “1”
means that the present executing branch instruction in
the global history is affected by the physical register. “0”
means there is no affection. The proposed architecture
sets all to “1” from the first most significant bit (MSB) 1
to the least significant bit (LSB) to obtain the related
global history length. Second, ANDing-logic is used
between the modified BRDT entry and global history to
obtain strongly correlated bits in the global history
register. Third, the new BHR and the upper PC is
required to avoid the aliasing problem. Using the
appropriate upper PC value instead of resetting to 0 in
masked BHR decreases the aliasing occurrence rate and
accesses different PHT entries per branch. Fourth, the

Fig. 1 Proposed Architecture

한국정보통신학회논문지 Vol. 23, No. 12: 1734-1737, Dec. 2019

1736

proposed architecture accesses the PHT entry after doing
exclusive-OR arithmetic between the new BHR and PC
shifted by 0 and 4 bits to make a unique pattern. Fifth,
the gshare predictor was modified, which is capable of
including information about a lengthy branch history to
achieve a high prediction rate with a variety of shifted
PC values. The proposed architecture uses the global
history folding technique under specific conditions
because the history length of the conventional gshare
preditor is as limited as the PHT entries are. For a
specific branch condition, some of the correlated branches
may have appeared at a large distance in the dynamic
instruction stream. It sometimes includes important
information, which is apt to miss a function containing
many branches due to short BHR. Therefore, a long
global history register was folded in half in order not to
lose a information about long branch history. As a result,
the proposed architecture could use only the same size as
the PHT index bits used in gshare predictor. To predict
branch outcomes more accurately with correlations of
branch instructions, the proposed architecture used both
a folding of the global history register in half and the
exclusive-OR arithmetic with 0, 4, and 12 shifted
program counter values. Consequently, exclusive-OR
logics with modified global history and a variety of
shifted PC values produced patterns that were more
accurate to index the PHT in order to decrease the
aliasing rate.

Ⅲ. Measurement Results

To measure the proposed HDBP, SimpleScalar with
SPEC2000 benchmarks were used. Aliasing rate,
performance improvement, and IPC were compared
among the HDBP, DpBHLA, and gshare. The aliasing
rate is the total number of aliasing occurrences over the
PHT entry size from 1,024 to 8,192. The Performance is
the branch direction-prediction rate. In other words, it
connotes the accuracy of the branch prediction.

Fig. 2 depicts the aliasing rate with gshare and

DpBHLA, and Fig. 3 shows the improvement rate of
aliasing occurrences when varying PHT size. Aliasing
occurred least in the HDBP, regardless of the size of the
PHT entries. That is, on average, the aliasing rate of the
proposed structure decreased to 44.1% with gshare, and
to 34.9% with DpBHLA. Fig. 4 shows the performance
improvement of the HDBP over gshare, with each
benchmark according to each PHT size. Because the
HDBP had the smallest number of aliasing occurrences,
regardless of the number of PHT entries, it predicted the
branch outcome more accurately than did other branch
predictors that are used with most programs. On average,
when the number of the PHT entries were 1K, 2K, 4K
and 8K, performance improvement increased by 20.62%,
18.80%, 20.46% and 16.37%, respectively. In other
words, irrespective of the size of the PHT entries, the
performance improvement increased to 19.06%, on average.
Fig. 5 shows the IPC, which is the standard for a
processor’s performance with each PHT entry size. On
average, the HDBP could achieve 1.390 IPC compared
to 1.370 with gshare and 1.385 with DpBHLA.

Fig. 2 Aliasing rate with each PHT entry size

Fig. 3 Aliasing improvement with each PHT entry size

슈퍼스칼라 프로세서를 위한 고성능 하이브리드 동적 분기 예측

1737

Fig. 4 Performance improvement with benchmarks

Fig. 5 IPC with each PHT entry size

Ⅳ. Conclusion

As recent microprocessors request high performance
using deeper pipelining and issuing multiple instructions
per cycle, accurate branch predictors have become an
import part of modern processor architecture. The
proposed HDBP is a completely dynamic per-branch
method with a static prediction scheme. To make more
identified patterns and prevent destructive aliasing,
dynamically new BHR was made, a variety of stage PC
values were accumulated, and a folded global history
register was used in the predictor.

The simulation results showed that when the PHT
entries were 1K, 2K, 4K, and 8K, the aliasing rate
decreased by 38.3%, 46.0%, 46.1%, and 45.8%, respectively,
compared with gshare. It also decreased by 34.9% with
DpBHLA. In addition, when the proposed HDBP is
used, the aliasing occurrence rate is the best in 4K PHT
entries. Because of the sharp reduction in aliasing
occurrences, branch performance improved by 20.46%

in 4K entries. IPC also increased by 1.28% on average,
regardless of the number of PHT entries. In conclusion,
the HDBP is an efficient branch predictor because less
aliasing occurs than in DpBHLA and gshare.
Furthermore, the HDBP greatly decreases branch
prediction miss rate and increases the IPC.

REFERENCES

[1] A. Mondelli, “Revisiting wide superscalar microarchitecture,”
Ph. D. dissertation, University of Rennes 1, Rennes, France,
2017.

[2] Y. Hou, H. He, X. Yang, D. Guo, X. Wang, J. Fu, and K.
Qiu. (2016, October). FuMicro: A fused microarchitecture
design integrating in-order superscalar and VLIW. VLSI
Design [Internet] Available: http://dx.doi.org/10.1155/2016/
8787919.

[3] M. Alipour, T. E. Carlson, D. Black-Schaffer, and S.
Kaxiras, “Maximizing limited resources: a limit-based study
and taxonomy of out-of-order commit,” Journal of Signal
Processing Systems, vol. 91, pp. 379-397, Apr. 2019.

[4] T.-Y. Yeh, and Y. N. Patt, “Alternative implementations of
two-level adaptive branch prediction,” in Proceedings of the
19th International Symposium on Computer Architecture,
Queensland: Australia, pp. 124-134, 1992.

[5] S. McFarling, “Combining branch predictors,” Western
Research Laboratory, Palo Alto: CA, Technical Report
TN-36, 1993.

[6] R. Thomas, M. Franklin, C. Wilkerson, and J. Stark,
“Improving branch prediction by dynamic dataflow-based
identification of correlated branches from a large global
history,” in Proceedings of the 30th International
Symposium on Computer Architecture, San Diego: CA, pp.
314-323, 2003.

[7] J. W. Kwak, and C. S. Jhon, “Dynamic Per-Branch History
Length Adjustment to Improve Branch Prediction Accuracy,”
Microprocessors and Microsystems, vol. 31, pp. 63-76, Feb.
2007.

[8] S. Mittal, A survey of techniques for dynamic branch
prediction. (2018, September). Concurrency and Computation
[Internet]. Available: https://doi.org/10.1002/ cpe.4666.

