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ABSTRACT

This paper presents a prediction structure with a Hybrid 
Dynamic Branch Prediction (HDBP) scheme which 
decreases the number of stalls. In the application, a branch 
history register is dynamically adjusted to produce more 
unique index values of pattern history table (PHT). The 
number of stalls is also reduced by using the modified 
gshare predictor with a long history register folding 
scheme. The aliasing rate decreased to 44.1% and the miss 
prediction rate decreased to 19.06% on average compared 
with the gshare branch predictor, one of the most popular 
two-level branch predictors. Moreover, Compared with the 
gshare, an average improvement of 1.28% instructions per 
cycle (IPC) was achieved. Thus, with regard to the 
accuracy of branch prediction, the HDBP is remarkably 
useful in boosting the overall performance of the superscalar 
processor.
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Prediction Accuracy

Ⅰ. Introduction

The most recent studies on high performance 
superscalar processor architecture focused on implementing 
deeper pipelining, instruction prefetching, multiple 
issuing, and dynamic scheduling to improve performance 

[1,2]. However, we could not obtain the satisfactory 
results with these innovations because the misprediction 
penalty becomes higher with the usage of deeper 
pipelining and the wider issue technique [3]. Better 
branch prediction mechanisms are vital to prevent the 
flushed cycles caused by misprediction. Therefore, more 
accurate branch predictors are required to achieve high 
performance. Many studies have been proposed on 
two-bit saturating counter and a two-level branch 
predictor consisting of one level of PHT whose entries 
are also filled with two-bit saturating counter 
information [4]. McFarling also proposed a variation of 
the global-history two-level predictor called gshare. The 
gshare algorithm attempts to make better use of the 
index bits by hashing the branch history register (BHR) 
and the program counter (PC) to select an entry from the 
PHT. The combination of the BHR and PC tends to 
contain more information because of the non-uniform 
distribution of PC values and branch histories [5]. 
Recently, tracking data dependency and its application to 
branch prediction was proposed in response to the 
importance of selecting the optimal history length [6]. In 
addition, the Dynamic per Branch History Length 
Adjustment (DpBHLA) branch predictor adjusts BHR 
length both dynamically and logically [7]. Whenever a 
branch instruction is executed, this branch predictor 
saves the information in the data dependent history table, 
which includes register writing instructions, such as load 
or computation instructions. The record is saved in the 
branch register dependency table (BRDT), whose entry 
stores the key branch information and is equal to the 
number of physical registers.

The proposed HDBP scheme adjusts dynamically the 
most efficient history length per branch instruction, 
which records data dependencies among the branches, 
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decides the optimal length of the global history, and 
utilizes a diversely shifted program counter to increase 
the index rate of the PHT entries. Furthermore, if the 
global history register (GHR) length is longer than the 
BRDT width, GHR is folded in half with XOR logic to 
make a unique pattern. Thus, a dynamic history length 
adjustment predictor, as well as modified gshare 
predictor with a long history length, is provided.

Ⅱ. Proposed Architecture

A recent study suggested a dynamic branch predictor 
that combined PC and branch history in a dynamic way 
because the best history length depends on program 
[7-8]. This section presents the HDBP which takes 
advantage of both the dynamic branch predictor and the 
static predictor. Fig. 1 shows a block diagram of the 
HDBP. The HDBP records a basic block execution that 
includes register writing instructions at the BRDT. 
Therefore, when a register has data dependency with 
previously executed basic blocks, the data dependency is 
easily recognized by the indexing BRDT. Because a 
branch path is judged by a register in the instruction, the 

known register’s data dependency allows more accurate 
branch prediction. Based on the contents of the BRDT, 
the proposed architecture examines how many 
determined the number of branch instructions existing 
between the current branch instruction and previous 
branches that have data dependency with a register in the 
current executing branch instruction. After examination, 
the proposed architecture chooses BHR bits which are 
necessary for branch prediction. First, each BRDT entry 
records the correlated information that the latest 
computation writes into the related physical register. “1” 
means that the present executing branch instruction in 
the global history is affected by the physical register. “0” 
means there is no affection. The proposed architecture 
sets all to “1” from the first most significant bit (MSB) 1 
to the least significant bit (LSB) to obtain the related 
global history length. Second, ANDing-logic is used 
between the modified BRDT entry and global history to 
obtain strongly correlated bits in the global history 
register. Third, the new BHR and the upper PC is 
required to avoid the aliasing problem. Using the 
appropriate upper PC value instead of resetting to 0 in 
masked BHR decreases the aliasing occurrence rate and 
accesses different PHT entries per branch. Fourth, the 

Fig. 1 Proposed Architecture
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proposed architecture accesses the PHT entry after doing 
exclusive-OR arithmetic between the new BHR and PC 
shifted by 0 and 4 bits to make a unique pattern. Fifth, 
the gshare predictor was modified, which is capable of 
including information about a lengthy branch history to 
achieve a high prediction rate with a variety of shifted 
PC values. The proposed architecture uses the global 
history folding technique under specific conditions 
because the history length of the conventional gshare 
preditor is as limited as the PHT entries are. For a 
specific branch condition, some of the correlated branches 
may have appeared at a large distance in the dynamic 
instruction stream. It sometimes includes important 
information, which is apt to miss a function containing 
many branches due to short BHR. Therefore, a long 
global history register was folded in half in order not to 
lose a information about long branch history. As a result, 
the proposed architecture could use only the same size as 
the PHT index bits used in gshare predictor. To predict 
branch outcomes more accurately with correlations of 
branch instructions, the proposed architecture used both 
a folding of the global history register in half and the 
exclusive-OR arithmetic with 0, 4, and 12 shifted 
program counter values. Consequently, exclusive-OR 
logics with modified global history and a variety of 
shifted PC values produced patterns that were more 
accurate to index the PHT in order to decrease the 
aliasing rate.

Ⅲ. Measurement Results

To measure the proposed HDBP, SimpleScalar with 
SPEC2000 benchmarks were used. Aliasing rate, 
performance improvement, and IPC were compared 
among the HDBP, DpBHLA, and gshare. The aliasing 
rate is the total number of aliasing occurrences over the 
PHT entry size from 1,024 to 8,192. The Performance is 
the branch direction-prediction rate. In other words, it 
connotes the accuracy of the branch prediction. 

Fig. 2 depicts the aliasing rate with gshare and 

DpBHLA, and Fig. 3 shows the improvement rate of 
aliasing occurrences when varying PHT size. Aliasing 
occurred least in the HDBP, regardless of the size of the 
PHT entries. That is, on average, the aliasing rate of the 
proposed structure decreased to 44.1% with gshare, and 
to 34.9% with DpBHLA. Fig. 4 shows the performance 
improvement of the HDBP over gshare, with each 
benchmark according to each PHT size. Because the 
HDBP had the smallest number of aliasing occurrences, 
regardless of the number of PHT entries, it predicted the 
branch outcome more accurately than did other branch 
predictors that are used with most programs. On average, 
when the number of the PHT entries were 1K, 2K, 4K 
and 8K, performance improvement increased by 20.62%, 
18.80%, 20.46% and 16.37%, respectively. In other 
words, irrespective of the size of the PHT entries, the 
performance improvement increased to 19.06%, on average. 
Fig. 5 shows the IPC, which is the standard for a 
processor’s performance with each PHT entry size. On 
average, the HDBP could achieve 1.390 IPC compared 
to 1.370 with gshare and 1.385 with DpBHLA. 

Fig. 2 Aliasing rate with each PHT entry size

Fig. 3 Aliasing improvement with each PHT entry size
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Fig. 4 Performance improvement with benchmarks

Fig. 5 IPC with each PHT entry size

Ⅳ. Conclusion

As recent microprocessors request high performance 
using deeper pipelining and issuing multiple instructions 
per cycle, accurate branch predictors have become an 
import part of modern processor architecture. The 
proposed HDBP is a completely dynamic per-branch 
method with a static prediction scheme. To make more 
identified patterns and prevent destructive aliasing, 
dynamically new BHR was made, a variety of stage PC 
values were accumulated, and a folded global history 
register was used in the predictor. 

The simulation results showed that when the PHT 
entries were 1K, 2K, 4K, and 8K, the aliasing rate 
decreased by 38.3%, 46.0%, 46.1%, and 45.8%, respectively, 
compared with gshare. It also decreased by 34.9% with 
DpBHLA. In addition, when the proposed HDBP is 
used, the aliasing occurrence rate is the best in 4K PHT 
entries. Because of the sharp reduction in aliasing 
occurrences, branch performance improved by 20.46% 

in 4K entries. IPC also increased by 1.28% on average, 
regardless of the number of PHT entries. In conclusion, 
the HDBP is an efficient branch predictor because less 
aliasing occurs than in DpBHLA and gshare. 
Furthermore, the HDBP greatly decreases branch 
prediction miss rate and increases the IPC.
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