DOI QR코드

DOI QR Code

RPL에서 이동성 향상을 위한 DIO 전송 간격 조절

The DIO Interval Adjustment to Enhance Mobility in RPL

  • Shin, Yejin (School of Electrical, Electronics & Communication Engineering, Korea University of Technology & Education) ;
  • Seol, Soonuk (School of Electrical, Electronics & Communication Engineering, Korea University of Technology & Education)
  • 투고 : 2019.10.08
  • 심사 : 2019.10.29
  • 발행 : 2019.12.31

초록

본 논문에서는 RPL을 사용하는 사물인터넷 환경에서 노드들이 이동할 때에도 토폴로지 변경에 빠르게 적응하여 패킷 손실 문제를 해결하기 위한 방안을 제안한다. 이동성을 향상시키기 위해 모든 노드는 이웃 노드들의 이동성을 인식하고, 전체 수신 패킷과 제어메시지 수를 고려하여 이동 정도를 수치화한다. 이동 정도에 따라 DIO 타이머를 동적으로 설정하여 토폴로지 변경을 빠르게 인식하고 목적지까지의 경로를 업데이트할 수 있도록 한다. 제안 방식의 성능은 Contiki 기반 Cooja 시뮬레이터를 이용하여 다양한 이동 속도에 대해서 평가한다. 시뮬레이션 결과, 제안된 방식은 패킷 전달률이 31.03% 개선됨을 확인하여 표준 RPL보다 이동성 시나리오에 잘 대처함을 보여준다.

The main purpose of this research is to propose an approach for solving the packet loss problem by quickly adapting to topology change when nodes move in RPL-based IoT environment. In order to enhance mobility, every node is aware of the mobility of its neighbor nodes and quantifies the mobility level based on the number of control messages and all received packets. According to the mobility level, the DIO timer is changed. The proposed approach allows nodes to change their DIO timers according to their mobility levels to adapt topology changes and update paths to the sink. The performance of the proposed approach is evaluated using a Contiki-based Cooja simulator in various moving speeds. The simulation results show that the proposed approach copes with mobility scenarios better than the standard RPL by ascertaining that the packet delivery ratio is improved by 31.03%.

키워드

과제정보

This paper was supported by the Sabbatical Year Research Program of Koreatech in 2018.

참고문헌

  1. RFC 6550, IETF Standard for RPL: IPv6 routing protocol for low-power and lossy networks, IETF, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J. Vasseur, and R. Alexander, 2012.
  2. RFC 2460, IETF Standard for Internet protocol, version 6 (IPv6) specification, IETF, S. Deering, and Hinden R, 2017.
  3. IEEE Std. 802.15.4, IEEE Standard for Low-Rate Wireless Networks, IEEE, R. Heile, 2015.
  4. K. C. Lee, R. Sudhaakar, L. Dai, S. Addepalli, and M. Gerla, "RPL under mobility," in 2012 IEEE consumer communications and networking conference, Las Vegas: NV, pp. 300-304, 2012.
  5. Contiki: The Open Source Operating System for the Internet of Things [Internet]. Available: http://contiki-os.org/.
  6. RFC 6719, IETF Standard for The Minimum Rank with Hysteresis Objective Function, IETF, O. Gnawali, and P. Levis, 2012.
  7. M. Banh, N. Nguyen, K. H. Phung, L. Nguyen, N. H. Thanh, and K. Steenhaut, "Energy balancing RPL-based routing for Internet of Things," in 2016 IEEE Sixth International Conference on Communications and Electronics, Quang Ninh: Vietnam, pp. 125-130, 2016.
  8. H. Lamaazi, and N. Benamar, "OF-EC: A novel energy consumption aware objective function for RPL based on fuzzy logic," Journal of Network and Computer Applications, vol. 117, pp. 42-58, Sep. 2018. https://doi.org/10.1016/j.jnca.2018.05.015
  9. C. Abreu, M. Ricardo, and P. M. Mendes, "Energy-aware routing for biomedical wireless sensor networks," Journal of Network and Computer Applications, vol. 40, pp. 270-278, Apr. 2014. https://doi.org/10.1016/j.jnca.2013.09.015
  10. RFC 6206, IETF Standard for the Trickle Algorithm, IETF, P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, 2011.
  11. I. E. Korbi, M. B. Brahim, C. Adjih, and L. A. Saidane, "Mobility enhanced RPL for wireless sensor networks," in 2012 Third international conference on the network of the future, Gammarth: Tunisia, pp. 1-8, 2012.
  12. C. Cobarzan, J. Montavont, and T. Noel, "Analysis and performance evaluation of RPL under mobility," in 2014 IEEE symposium on computers and communications, Funchal: Portugal, pp. 1-6, 2014.
  13. F. Gara, L. B. Saad, E. B. Hamida, B. Tourancheau, and R. B. Ayed, "An adaptive timer for RPL to handle mobility in wireless sensor networks," in 2016 International wireless communications and mobile computing conference, Paphos: Cyprus, pp. 678-683, 2016.
  14. S. Sanshi, and C. D. Jaidhar, "Enhanced mobility aware routing protocol for Low Power and Lossy Networks," Wireless Networks, vol. 25, no. 4, pp.1641-1655, May. 2019. https://doi.org/10.1007/s11276-017-1619-6
  15. P. Satanasaowapak, and C. Khunboa, "The improvement of node mobility in RPL to increase transmission efficiency," International Journal of Electrical & Computer Engineering, vol. 9, no. 5, pp. 4238-4249, Oct. 2019.
  16. H. Kharrufa, H. Al-Kashoash, and A. H. Kemp, "A game theoretic optimization of RPL for mobile Internet of Things applications," IEEE Sensors Journal, vol. 18, no. 6, pp.2520-2530, Jan. 2018. https://doi.org/10.1109/JSEN.2018.2794762
  17. CC2538: A Powerful System-On-Chip for 2.4-GHz IEEE 802.15.4-2006 and ZigBee Applications [Internet]. Available: http://www.ti.com/product/CC2538/.
  18. Wireshark: a free and open-source packet analyzer [Internet]. Available: https://www.wireshark.org/.