DOI QR코드

DOI QR Code

Optimal Parameter Extraction based on Deep Learning for Premature Ventricular Contraction Detection

심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출

  • Cho, Ik-sung (Department of Creative Integrated General Studies, Daegu University) ;
  • Kwon, Hyeog-soong (Department of IT Engineering, Pusan National University)
  • Received : 2019.08.22
  • Accepted : 2019.09.16
  • Published : 2019.12.31

Abstract

Legacy studies for classifying arrhythmia have been studied to improve the accuracy of classification, Neural Network, Fuzzy, etc. Deep learning is most frequently used for arrhythmia classification using error backpropagation algorithm by solving the limit of hidden layer number, which is a problem of neural network. In order to apply a deep learning model to an ECG signal, it is necessary to select an optimal model and parameters. In this paper, we propose optimal parameter extraction method based on a deep learning. For this purpose, R-wave is detected in the ECG signal from which noise has been removed, QRS and RR interval segment is modelled. And then, the weights were learned by supervised learning method through deep learning and the model was evaluated by the verification data. The detection and classification rate of R wave and PVC is evaluated through MIT-BIH arrhythmia database. The performance results indicate the average of 99.77% in R wave detection and 97.84% in PVC classification.

부정맥 분류를 위한 기존 연구들은 분류의 정확성을 높이기 위해 신경회로망(Artificial Neural Network), 퍼지(Fuzzy), 기계학습(Machine Learning) 등을 이용한 방법이 연구되어 왔다. 특히 딥러닝은 신경회로망의 문제인 은닉층 개수의 한계를 해결함으로 인해 오류 역전파 알고리즘을 이용한 부정맥 분류에 가장 많이 사용되고 있다. 딥러닝 모델을 심전도 신호에 적용하기 위해서는 적절한 모델선택과 파라미터를 최적에 가깝게 선택할 필요가 있다. 본 연구에서는 심실 조기 수축 비트 검출을 위한 딥러닝 기반의 최적 파라미터 검출 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG신호에서 R파를 검출하고 QRS와 RR간격 세그먼트를 추출하였다. 이후 딥러닝을 통한 지도학습 방법으로 가중치를 학습시키고 검증데이터로 모델을 평가하였다. 제안된 방법의 타당성 평가를 위해 MIT-BIH 부정맥 데이터베이스를 통해 각 파라미터에 따른 딥러닝 모델로 훈련 및 검증 정확도를 확인하였다. 성능 평가 결과 R파의 평균 검출 성능은 99.77%, PVC는 97.84의 평균 분류율을 나타내었다.

Keywords

Acknowledgement

This work was supported by a 2-Year Research Grant of Pusan National University.

References

  1. S.-H. Liou, Y.-H. Wu, Y.-S. Syu, Y.-L. Gong, H.-C. Chen, and S.-T. Pan, "Real-time remote ECG signal monitor and emergency warning/positioning system on cellular phone," Intelligent Information and Database Systems, vol. 7198. Berlin, Germany: Springer-Verlag, 2012, pp. 336-345.
  2. C.Ye, B.V.K. Kumar, M.T Coimbra, "Heartbeat classification using morphological and dynamic features of ECG signals," IEEE Transactions on Biomedical Engineering, vol. 59, no. 10, pp. 2930-2941, October. 2012. https://doi.org/10.1109/TBME.2012.2213253
  3. M. J. Rooijakkers, C. Rabotti, H.D.Lau, S.G. Oei, J.W.M.Bergmans, M.Mischi, "Feasibility Study of a New Method for Low-Complexity Fetal Movement Detection From Abdominal ECG Recordings," IEEE Journal of Biomedical and Health Informatics, vol. 20, no. 5, pp. 1361-1368, Sept. 2016. https://doi.org/10.1109/JBHI.2015.2452266
  4. K.Hanbay, "Deep neural network based approach for ECG classification using hybrid differential features and active learning," Institution of Engineering and Technology, vol. 13, no. 2, pp. 165 - 175, May. 2019.
  5. W. Li, "Deep Intermediate Representation and In-Set Voting Scheme for Multiple-Beat Electrocardiogram Classification," IEEE Sensors Journal, vol.19, no.16, pp. 6895 - 6904, April. 2019. https://doi.org/10.1109/JSEN.2019.2910853
  6. P. Li, Y. Wang, J. He, L. Wang, Y. Tian, T. Zhou, T. Li, J.S. Li, "High-Performance Personalized Heartbeat Classification Model for Long-Term ECG Signal," IEEE Transactions on Biomedical Engineering, vol. 64, no. 1, pp. 78-86, Jan. 2017. https://doi.org/10.1109/TBME.2016.2539421
  7. S. S. Xu, M.-W. Mak, C.-C. Cheung, "Towards End-to-End ECG Classification With Raw Signal Extraction and Deep Neural Networks," IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 4, pp. 1574 - 1584, Sept. 2019. https://doi.org/10.1109/JBHI.2018.2871510
  8. I. S. Cho, H. S.Kwon "Optimal Threshold Setting Method for R Wave Detection According to The Sampling Frequency of ECG Signals," Journal of Korea Institute of Information and Communication Engineering, vol. 21, no. 7, pp. 1420-1428, July 2017. https://doi.org/10.6109/jkiice.2017.21.7.1420
  9. W. Li, J. Li, "Local Deep Field for Electrocardiogram Beat Classification," IEEE Sensors Journal, vol. 18, no. 4, pp. 1656 - 1664, Nov. 2019. https://doi.org/10.1109/jsen.2017.2772031
  10. G. Wang, J. Hu, C. Li, B. Guo, F. Li, "Simultaneous Human Health Monitoring and Time-Frequency Sparse Representation Using EEG and ECG Signals," IEEE Access, vol. 7, pp. 85985 - 85994, June. 2019. https://doi.org/10.1109/access.2019.2921568
  11. Q. Li, C. Rajagopalan, G.D. Clifford, "Ventricular Fibrillation and Tachycardia Classification Using a Machine Learning Approach," IEEE Transactions on Biomedical Engineering, vol. 61, no. 6, pp. 1607-1613, July 2013. https://doi.org/10.1109/TBME.2013.2275000