Abstract
Medical institutions face the challenge of securing competitiveness among medical institutions due to the rapid spread of ICT convergence, and managing data that is growing at an enormous rate due to the emergence of big data and the emergence of the Internet of Things. The big data paradigm of the medical community is not just about large data or tools and processes for processing and analyzing it, but also means a computerized shift in the way people live, think and study. As the medical data is recently released, the demand for the use of medical data is increasing. Therefore, the research on disease detection system based on public data using open source that can help rational and efficient decision making was conducted. As a result of the experiment, unlike a simple disease inquiry or a symptom inquiry about a single disease provided by a public institution, related diseases are searched by a symptom or a cause.
의료기관은 급속한 ICT 융합 보급에 따른 의료 기관 간의 경쟁력을 확보하고, 의료 산업을 통해 발생하는 데이터의 빅 데이터화 및 사물 인터넷 의 등장으로 엄청난 속도로 증가하는 데이터를 관리해야하는 과제에 직면해 있다. 이러한 의료계의 빅 데이터 패러다임은 단순히 크기가 큰 자료나 그것을 처리하고 분석하는 도구와 과정만을 의미하는 것이 아니라 인간이 생활하고 사고하고 연구하는 방식의 전산적인 전환을 의미한다고 볼 수 있다. 최근 의료분야 데이터가 공개됨에 따라 의료 데이터의 활용 요구가 증가하고 있으므로 합리적이고 효율적인 의사 결정에 도움을 줄 수 있는 오픈 소스를 활용한 공공 데이터 기반의 질병 검색 시스템 연구를 진행하였다. 실험 결과 기존 공공 기관에서 제공하는 단순 질병 조회나 단일 질환에 대한 증상 조회와는 달리 증상이나 원인으로 검색해도 관련 질병들이 검색되며 병명이 재지정 되었거나 유사한 증상을 가지는 질병들도 검색이 되었다.