DOI QR코드

DOI QR Code

수신된 전파신호의 자동 변조 인식을 위한 딥러닝 방법론

A deep learning method for the automatic modulation recognition of received radio signals

  • Kim, Hanjin (Department of Computer Engineering, Chungnam National University) ;
  • Kim, Hyeockjin (Department of Computer Engineering, Chungnam National University) ;
  • Je, Junho (Department of Computer Engineering, Chungnam National University) ;
  • Kim, Kyungsup (Department of Computer Engineering, Chungnam National University)
  • 투고 : 2019.06.13
  • 심사 : 2019.07.12
  • 발행 : 2019.10.31

초록

무선 신호의 자동 변조 인식은 지능형 수신기의 주요한 작업으로 다양한 민간 및 군대 응용분야가 있다. 본 논문에서는 딥 뉴럴 네트워크 모델을 기반한 무선통신에서 전파신호의 변조 방식을 식별하는 방법을 제안한다. 순차적인 데이터에 대해 장기적인 패턴을 잡아내는데 용이한 LSTM 모델을 통과하여 얻은 연속적인 신호의 특징값을 딥 뉴럴 네트워크의 입력 데이터로 사용하여 신호의 변조 패턴을 분류한다. 변조된 신호의 진폭 및 위상, 동상(In-phase) 반송파, 직각 위상(Quadrature-phase) 반송파의 값을 LSTM 모델의 입력 데이터로 사용하여 분류한다. 제안된 학습 방법의 성능을 검증하기 위해, 다양한 신호 대 잡음비로 10 가지 유형의 변조 신호를 포함하는 대형 데이터 세트를 사용하여 학습하고 테스트한다. 본 논문의 변조 인식 프로그램은 신호의 사전 정보가 없는 환경에서 변조방식을 예측하는데 적용될 수 있다.

The automatic modulation recognition of a radio signal is a major task of an intelligent receiver, with various civilian and military applications. In this paper, we propose a method to recognize the modulation of radio signals in wireless communication based on the deep neural network. We classify the modulation pattern of radio signal by using the LSTM model, which can catch the long-term pattern for the sequential data as the input data of the deep neural network. The amplitude and phase of the modulated signal, the in-phase carrier, and the quadrature-phase carrier are used as input data in the LSTM model. In order to verify the performance of the proposed learning method, we use a large dataset for training and test, including the ten types of modulation signal under various signal-to-noise ratios.

키워드

과제정보

This work was supported by research fund of Chungnam National University.

참고문헌

  1. S. Rajendran, W. Meert, D. Giustiniano, V. Lenders, and S. Pollin, "Deep learning models for wireless signal classification with distributed low-cost spectrum sensors," IEEE Transactions on Cognitive Communications and Networking, vol. 4, no. 3, pp. 433-445, Sep. 2018. https://doi.org/10.1109/TCCN.2018.2835460
  2. D. Zhang, W. Ding, B. Zhang, C. Xie, H. Li, , C. Liu, and J. Han, "Automatic modulation classification based on deep learning for unmanned aerial vehicles," Sensors, vol.18, no. 3, pii: E924, 2018.
  3. O. A. Dobre, A. Abdi, Y. Bar-Ness, and W. Su, "Survey of automatic modulation classification techniques: classical approaches and new trends," IET Communications, vol. 1, no. 2, pp. 137-156, Apr. 2007. https://doi.org/10.1049/iet-com:20050176
  4. T. J. O'Shea, J. Corgan, and T. C. Clancy, "Convolutional radio modulation recognition networks," in International Conference on Engineering Applications of Neural Networks, Communications in Computer and Information Science, Springer, pp. 213-226, 2016.
  5. T. J. O'Shea, T. Roy, and T. C. Clancy, "Over-the-air deep learning based radio signal classification," IEEE Journal of Selected Topics in Signal Processing, vol. 12, no. 1, pp. 168-179, Feb. 2018. https://doi.org/10.1109/JSTSP.2018.2797022
  6. T. J. O'Shea, and N. West, "Radio machine learning dataset generation with GNU radio," in Proceedings of the GNU Radio Conference, vol. 1, no. 1, 2016.
  7. GNU radio: tools for exploring the radio frequency spectrum [Internet]. Available: http://www.gnuradio.org.
  8. W. A. Gardner, "Signal interception: a unifying theoretical framework for feature detection," IEEE Transactions on Communications, vol. 36, no. 8, pp. 897-906, Aug. 1988. https://doi.org/10.1109/26.3769
  9. N. E. West, and T. O'Shea, "Deep architectures for modulation recognition," in IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp. 1-6, 2017.
  10. S. Hochreiter, and J. U. Schmidhuber, "Long Short-Term Memory," Neural Computation, vol. 9, no. 8, pp. 1735-1780, 1997. https://doi.org/10.1162/neco.1997.9.8.1735
  11. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," The Journal of Machine Learning Research, vol. 15, no. 1, pp. 1929-1958, 2014.
  12. TensorFlow: A system for large-scale machine learning [Internet]. Available: https://www.tensorflow.org/.
  13. D. P. Kingma, and J. Ba, "Adam: A method for stochastic optimization," in Proceedings of the 3rd International Conference on Learning Representations (ICLR), abs/1412.6980, 2014.