DOI QR코드

DOI QR Code

온도구배터널 내 상승온도에 의한 난지형 마늘(Allium sativum L.)의 광합성 및 생육 특성의 변화

Photosynthesis and Growth of Southern-type Garlic (Allium sativum L.) in Response to Elevated Temperatures in a Temperature Gradient Tunnel

  • 오서영 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 문경환 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 송은영 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 신민지 (농촌진흥청 국립원예특작과학원 온난화대응농업연구소) ;
  • 고석찬 (제주대학교 생물학과)
  • Oh, Seo-Young (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Moon, Kyung Hwan (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Song, Eun Young (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Shin, Minji (Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science) ;
  • Koh, Seok Chan (Department of Biology, Jeju National University)
  • 투고 : 2019.11.11
  • 심사 : 2019.12.18
  • 발행 : 2019.12.30

초록

본 연구는 마늘을 온도구배터널에서 재배하면서 생육기간 동안 인편의 발아, 지상부 생육과 광합성 특성, 인경 발달 등을 조사함으로써 기후변화에 대응하여 마늘 생육 전반에 미치는 기온상승의 영향을 살펴보고 이를 최소화 할 수 있는 방안을 모색하고자 하였다. 터널 중앙부 온도(Tamb+3℃)와 후미부 온도(Tamb+6℃)는 입구의 대기온도(Tamb)를 기준으로 각각 3.2℃, 5.8℃가 높게 유지되었다. 인편의 발아는 터널 입구보다 중앙부와 후미부에서 더 늦었다. 그러나 추대기간과 개체당 최대 엽수에 도달하는 기간이 터널 입구에서 보다 중앙부와 후미부에서 짧게 나타났다. 지상부의 생장은 터널 입구에서 생육하였을 때 전반적으로 높고 중앙부와 후미부에서 감소하는 양상을 보였으며, 인경은 터널 내부의 온도 간에 큰 차이를 보이지는 않았으나 생육후기에 인경 생체량과 건체량은 터널 입구와 중앙부에서 생육하였을 때 다소 높았다. 광합성률(A), 기공전도도(gs), 증산률(E)은 터널 입구에서 보다 중앙부에서 재배하였을 때 증가하였다. 또한 최대 광합성률(Amax)은 중앙부에서 생육하였을 때 높았으며, 호흡률(Rd)은 낮았다. 터널 입구 및 중앙부에서 인경발달이 더 왕성하여 크기가 크고 상품성이 높은 인경을 수확할 수 있었으나 터널 후미부인 대기온도 +6℃에서는 인경의 크기가 작아지고 소인편들이 생겨서 상품성이 낮았다. 따라서 대기온도보다 기온이 상승하였을 때에는 파종 전에 인편 발아에 필요한 저온요구도를 미리 충족시키거나 파종시기를 늦춘다면 인편 발아율을 높이면서 생산량도 증가시킬 수 있을 것으로 보인다. 그리고 인경 발달 단계에서 고온에 의한 상품성 하락을 최소화하기 위하여 수확시기를 앞당겨 수확하는 것도 고려할 필요가 있다.

This study assessed clove germination, shoot growth, photosynthesis and bulb development of southern-type garlic (Allium sativum L.) in a temperature gradient tunnel (TGT), to examine the impacts of increases in temperature on the growth of garlic and find a way to minimize them. The temperatures in the middle and outlet of the TGT were 3.2℃ and 5.8℃ higher, respectively, than the ambient temperature at the tunnel inlet. The germination of garlic cloves was late at temperatures of ambient+3℃ (in the middle of the TGT) and ambient+6℃ (at the outlet) than at ambient temperature (at the inlet). However, bolting and the timing of maximum leaf number per plant were faster at ambient+3℃ or +6℃ than at ambient temperature. Shoot growth was generally greater at ambient temperature. Bulb growth did not significantly differ according to cultivation temperatures, but fresh and dry weights were slightly higher at ambient temperature and ambient+3℃ in the late growth stage. The photosynthesis rate (A), stomatal conductance (gs), and transpiration rate (E) were higher at ambient+3℃ than at ambient temperature. Furthermore, at ambient+3℃, the net photosynthetic rate (Amax) was high, while the dark respiration rate (Rd) was low. At ambient temperature and ambient+3℃, bulb development was healthier, resulting in better productivity and more commercial bulbs, while at ambient+6℃, the bulbs were small and secondary cloves developed, resulting in low commercial value. Therefore, at elevated temperatures caused by global warming, it is necessary to meet the low-temperature requirements before clove sowing, or to delay the sowing time, to improve germination rate and increase yield. The harvest should also be advanced to escape high-temperature stress in the bulb development stage.

키워드

참고문헌

  1. Atkin, O. K., and M. G. Tjoelker, 2003: Thermal acclimation and the dynamic response of plant respiration to temperature. Trends in Plant Science 8(7), 343-351. https://doi.org/10.1016/S1360-1385(03)00136-5
  2. Benschop, M., R. Kamenetsky, M. Le Nard, H. Okubo, and A. De Hertogh, 2010: The global flower bulb industry: production, utilization, and research. Horticicultural Reviews 36, 1-115.
  3. Brewster, J. L., 2008: Onions and Other Vegetable Alliums. Wallingford, CAB International.
  4. Campbell, C., L. Atkinson, J. Zaragoza-Castells, M. Lundmark, O. Atkin, and V. Hurry, 2007: Acclimation of photosynthesis and respiration is asynchronous in response to change in temperature regardless of plant functional group. New Phytologist 176(2), 375-389. https://doi.org/10.1111/j.1469-8137.2007.02183.x
  5. de Resende, J. T. V., R. G. F. Morales, F. V. Resende, M. V. Faria, R. J. de Souza, and A. Marchese, 2011: Garlic vernalization and planting dates in Guarapuava. Horticultura Brasileira 29(2), 193-198. https://doi.org/10.1590/S0102-05362011000200010
  6. del Pozo, A. L., and M. I. A. Gonzalez, 2005: Developmental responses of garlic to temperature andphotoperiod. Agriculture Technica 65(2), 119-126.
  7. Dong, Y., Z. Cheng, H. Meng, H. Liu, C. Wu, and A. R. Khan, 2013: The effect of cultivar, sowing date and transplant location in field on bolting of welsh onion (Allium fistulosum L.). BMC Plant Biology 13(1), 154pp. https://doi.org/10.1186/1471-2229-13-154
  8. Field, C. B., V. R. Barros, D. J. Dokken, K. J. Mach, M. D. Mastrandrea, T. E. Bilir, M. Chatterjee, K. L. Ebi, Y. O. Estrada, R. C. Genova, B. Girma, E. S. Kissel, A. N. Levy, S. MacCracken, P. R. Mastrandrea, and L. L. White, 2014: Climate change. 2014: Impacts, adaptation and vulnerability. Part A: Global and sectoral aspects, working group II contribution to the fifth assessment report of the intergovernmental. panel on climate changes. Cambridge University Press, Cambridge, UK and New York, NY, USA
  9. Guevara-Figueroa, T., L. Lopez-Hernandez, M. G. Lopez, M. D. Hurtado, M. E. Vazquez-Barrios, L. Guevara-Olvera, R. G. Gonzalez, D. M. Rivera-Pastrana, H. Torres-Robles, and E. M. Mercado-Silva, 2015: Conditioning garlic "seed" cloves at low temperature modifies plant growth, sugar, fructan content, and sucrose sucrose fructosyl transferase (1-SST) expression. Scientia Horticulturae 189, 150-158. https://doi.org/10.1016/j.scienta.2015.03.030
  10. Ikeda, H., T. Kinoshita, T. Yamamoto, and A. Yamasaki, 2019: Sowing time and temperature influence bulb development in spring-sown onion (Allium cepa L.). Scientia Horticulturae 244, 242-248. https://doi.org/10.1016/j.scienta.2018.09.050
  11. IPCC (Intergovernmental panel on climate change), 2012: Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Cambridge University Press, Cambridge, UK
  12. Kamenetsky, R., and H. D. Rabinowitch, 2002: Florogenesis. In Allium Crop Science: Recent Advances (ed. Rabinowitch HD, Currah L), pp. 31-57. Wallingford, CAB International.
  13. Khokhar, K. M., 2008: Effect of temperature and photoperiod on the incidence of bulbing and bolting in seedlings of onion cultivars of diverse origin. The Journal of Horticultural Science and Biotechnology 83(4), 488-496. https://doi.org/10.1080/14620316.2008.11512412
  14. Khokhar, K. M., P. Hadley, and S. Pearson, 2007: Effect of photoperiod and temperature on inflorescence appearance and subsequent development towards flowering in onion raised from sets. Scientia Horticulturae 112, 9-15. https://doi.org/10.1016/j.scienta.2006.12.009
  15. Lee, S. H., and I. Heo, 2018: Impact of climate on yield of highland Chinese Cabbage in Gangwon Province, South Korea Journal of the Korean Geographical Society 53(3), 265-282.
  16. Makino, A., 2011: Photosynthesis, grain yield, and nitrogen utilization in rice and wheat. Plant Physiology 155(1), 125-129. https://doi.org/10.1104/pp.110.165076
  17. Marshall, B., and P. V. Biscoe 1980: A model for $C_3$ leaves describing the dependence of net photosynthesis on irradiance. Journal of Experimental Botany 31(1), 29-39. https://doi.org/10.1093/jxb/31.1.29
  18. Moon, K. H., K. S. Choi, I. C. Son, E. Y. Song, and S. Oh, 2014: A simple emergence model of southern type garlic based on temperature. Korean Journal Agricultural and Forest Meteorology 16(4), 343-348. https://doi.org/10.5532/KJAFM.2014.16.4.343
  19. Oh, S., K. H. Moon, and S. C. Koh, 2015: Assessment of high temperature impacts on early growth of garlic plant (Allium sativum L.) through monitoring of photosystem II activities. Korean Journal of Horticultural Science and Technology 33(6), 829-838. https://doi.org/10.7235/hort.2015.15078
  20. Oh, S., K. H. Moon, and S. C. Koh, 2017: Effects of Different Day/Night Temperature Regimes on Growth and Clove Formation of Cool-type Garlic (Allium sativum L.) Plant. Horticultural Science and Technology 35(1), 1-10. https://doi.org/10.7235/HORT.20170001
  21. Oh, S., K. H. Moon, I. C. Son, E. Y. Song, Y. E. Moon, and S. C. Koh, 2014: Growth, photosynthesis and chlorophyll fluorescence of Chinese cabbage in response to high temperature. Korean Journal of Horticultural Science and Technology 32(3), 318-329. https://doi.org/10.7235/hort.2014.13174
  22. Oh. S., K. H. Moon, E. Y. Song, I. C. Son, and S. C. Koh, 2015: Photosynthesis of Chinese cabbage and radish in response to rising leaf temperature during spring. Horticulture, Environment, and Biotechnology 56(2), 159-166. https://doi.org/10.1007/s13580-015-0122-1
  23. Oh, S., K. H. Moon, E. Y. Song, I. C. Son, S. H. Wi, and S. C. Koh, 2017: Impact of rising global temperatures on the growth, mineral composition, and photosynthesis of radish in a winter cropping system. Horticultural Science and Technology 35(1), 38-45. https://doi.org/10.7235/HORT.20170005
  24. Pooler, M. R., and P. W. Simon, 1993: Garlic flowering in response to clone, photoperiod, growth temperature, and cold storage. HortScience 28(11), 1085-1086. https://doi.org/10.21273/HORTSCI.28.11.1085
  25. Wu, C., M. Wang, Z. Cheng, and H. Meng, 2016: Response of garlic (Allium sativum L.) bolting and bulbing to temperature and photoperiod treatments. Biology open 5(4), 507-518. https://doi.org/10.1242/bio.016444