DOI QR코드

DOI QR Code

Review of Metal Oxide-based Formaldehyde Gas Sensor to Measure Indoor Air Quality

실내 대기질 진단을 위한 금속산화물 기반 폼알데하이드 가스센서 연구 동향

  • Kim, Yoon Hwa (Wearable Platform Materials Technology Center, Korea Advanced Institute of Science and Technology) ;
  • Koo, Won-Tae (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jang, Ji-Soo (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Il-Doo (Wearable Platform Materials Technology Center, Korea Advanced Institute of Science and Technology)
  • 김윤화 (한국과학기술원 웨어러블 플랫폼 소재 기술센터) ;
  • 구원태 (한국과학기술원 신소재공학과) ;
  • 장지수 (한국과학기술원 신소재공학과) ;
  • 김일두 (한국과학기술원 웨어러블 플랫폼 소재 기술센터)
  • Received : 2019.11.01
  • Accepted : 2019.11.20
  • Published : 2019.11.30

Abstract

People currently spend more than 80% of their time indoors; therefore, the management of indoor air quality has become an important issue. The contamination of indoor air can cause sick house syndrome and various environmental diseases such as atopy and nephropathy. Formaldehyde gas, which is the main contaminant of indoor air, is lethal even with microscopic exposure; however, it is commonly used as an adhesive and waterproofing agent for indoor building materials. Therefore, there is a need for a gas sensor capable of detecting trace amounts of formaldehyde gas. In this review, we summarize recent studies on metal oxide-based semiconductor gas sensors for formaldehyde gas detection, methods to improve the gas-sensing properties of metal oxides of various dimensions, and the effects of catalysts for the detection of parts-per-billion level gases. Through this, we discuss the necessary characteristics of the metal oxidebased semiconductors for gas sensors for the development of next-generation sensors.

Keywords

References

  1. WHO: air pollution is single biggest environmental health risk, The Guardian, 2014-03-25.
  2. J.-S. Ham, "A Study on the Formaldehyde Concentration Producing Characteristics and Reducing Method in Newly Built Apartment House", J. the arch. Inst. of Korea: Planning & design, Vol. 28, No. 9, pp. 261-268, 2012.
  3. Ministry of Environment (South Korea), Plan of Indoor Air Quality Control (2015-2019), 2015.
  4. Ministry of Environment (South Korea), Indoor Air Quality Control Act (Enforcement Date 13. Jun, 2018.).
  5. WHO Regional Office for Europe, WHO Guidelines for Indoor Air Quality: Selected Pollutants, 2010.
  6. Ministry of Environment and National Institute of Environmental Research (South Korea), Indoor Air Quality Guideline, 2012.
  7. WHO Regional Office for Europe, Air Quality Guidelines, 2nd ed., Publisher, City, 2001.
  8. U.S. Department of Health and Human Services, Occupational Safety and Health Guideline for Formaldehyde Potential Human Carcinogen, Publisher, Washington, DC, USA, 1988.
  9. J. Lee and S.-H. Lim, "Review on Sensor Technology to Detect Toxic Gases", J. Sensor Sci. Technol. Vol. 24, No. 5, pp. 311-318, 2015. https://doi.org/10.5369/JSST.2015.24.5.311
  10. A. Bielanski, J. Deren, and J. Haber, "Electric Conductivity and Catalytic Activity of Semiconducting Oxide Catalysts", Nature, Vol. 179, No. 4561, pp. 668-669, 1957. https://doi.org/10.1038/179668a0
  11. S.-J. Choi, L. Persano, A. Composeo, J.-S. Jang, W.-T. Koo, S.-J. Kim, H.-J. Cho, I.-D. Kim, and D. Pisignano, "Electrospun Nanostructures for High Performance Chemiresistive and Optical Sensors", Macromol. Mater. Eng., Vol. 302, No. 8, pp. 1600569(1)-1600569(37), 2017. https://doi.org/10.1002/mame.201600569
  12. N. Barsan, M. Schweizer-Berberich, and W. Gopel, "Fundamental and practical aspects in the design of nanoscaled $SnO_2$ gas sensors: a status report", Fresenius J. Anal. Chem., Vol. 365, No. 4, pp. 287-304, 1999. https://doi.org/10.1007/s002160051490
  13. N. Hongsith, E. Wongrat, T. Kerdcharoenand, and S. Choopun, "Enhancement of sensor response by $TiO_2$ mixing and Au coating on ZnO tetrapod sensor", Sens. Actuator B, Vol. 147, No. 2, pp. 502-507, 2010. https://doi.org/10.1016/j.snb.2010.03.081
  14. Q. Huang, D. Zeng, H. Li, and C. Xie, "Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites", Nanoscale, Vol. 4, No. 18, pp. 5651-5658, 2012. https://doi.org/10.1039/c2nr31131c
  15. L. Peng, Q. Zhao, D. Wang, J. Zhai, P. Wang, S. Pang, and T. Xie, "Ultraviolet-assisted gas sensing: A potential formaldehyde detection approach at room temperature based on zinc oxide nanorods", Sens. Actuator B, Vol. 136, No. 1, pp. 80-85, 2009. https://doi.org/10.1016/j.snb.2008.10.057
  16. H. Liu, W. Zhang, H. Yu, L. Gao, Z. Song, S. Xu, M. Li, Y. Wang, H. Song, and J. Tang, "Solution-Processed Gas Sensors Employing $SnO_2$ Quantum Dot/MWCNT Nanocomposites", ACS Appl. Mater. Interfaces, Vol. 8, No. 1, pp. 840-846, 2016. https://doi.org/10.1021/acsami.5b10188
  17. J. Zhai, D. Wang, L. Peng, Y. Lin, X. Li, and T. Xie, "Visible-light-induced photoelectric gas sensing to formaldehyde based on CdS nanoparticles/ZnO heterostructures", Sens. Actuator B, Vol. 147, No. 1, pp. 234-240, 2010. https://doi.org/10.1016/j.snb.2010.03.003
  18. Y. Li, Q. Zhang, X. Li, H. Bai, W. Li, T. Zeng, and G. Xi, "Ligand-free and size-controlled synthesis of oxygen vacancy-rich $WO_{3-x}$ quantum dots for efficient room-temperature formaldehyde gas sensing", RSC Adv., Vol. 6, No. 98, pp. 95747-95752, 2016. https://doi.org/10.1039/C6RA20531C
  19. S. Tian, X. Ding, D. Zeng, S. Zhang, and C. Xie, "Poresize-dependent sensing property of hierarchical $SnO_2$ mesoporous microfibers as formaldehyde sensors", Sens. Actuator B, Vol. 186, No. 1, pp. 640-647, 2013. https://doi.org/10.1016/j.snb.2013.06.073
  20. H. Dua, J. Wang, M. Sua, P. Yao, Y. Zheng, and N. Yu, "Formaldehyde gas sensor based on $SnO_2/In_2O_3$ heteronanofibers by a modified double jets electrospinning process", Sens. Actuator B, Vol. 166-167, No. 1, pp. 746-752, 2012. https://doi.org/10.1016/j.snb.2012.03.055
  21. H. Tian, H. Fan, M. Li, and L. Ma, "Zeolitic Imidazolate Framework Coated ZnO Nanorods as Molecular Sieving to Improve Selectivity of Formaldehyde Gas Sensor", ACS Sens., Vol. 1, No. 3, pp. 243-250, 2016. https://doi.org/10.1021/acssensors.5b00236
  22. D. Wang, L. Tian, H. Li, K. Wan, X. Yu, P. Wang, A. Chen, X. Wang, and J. Yang, "Mesoporous Ultrathin $SnO_2$ Nanosheets in Situ Modified by Graphene Oxide for Extraordinary Formaldehyde Detection at Low Temperatures", ACS Appl. Mater. Interfaces, Vol. 11, No. 13, pp. 12808-12818, 2019. https://doi.org/10.1021/acsami.9b01465
  23. R. Kim, J.-S. Jang, D.-H. Kim, J.-Y. Kang, H.-J. Cho, Y. J. Jeong, and I.-D. Kim, "A General Synthesis of Crumpled Metal Oxide Nanosheets as Superior Chemiresistive Sensing Layers", Adv. Funct. Mater., Vol. 29, No. 31, pp. 1903128(1)-1903128(10), 2019. https://doi.org/10.1002/adfm.201903128
  24. Y. Cao, Y. He, X. Zou, and G.-D. Li, "Tungsten oxide clusters decorated ultrathin $In_2O_3$ nanosheets for selective detecting formaldehyde", Sens. Actuator B, Vol. 252, No. 1, pp. 232-238, 2017. https://doi.org/10.1016/j.snb.2017.05.181
  25. M. H. Oh, T. Yu, S.-H. Yu, B. Lim, K.-T. Ko, M.-G. Willinger, D.-H. Seo, B. H. Kim, M. G. Cho, and J.-H. Park, "Galvanic Replacement Reactions in Metal Oxide Nanocrystals", Science, Vol. 340, No. 6135, pp. 964-968, 2013. https://doi.org/10.1126/science.1234751
  26. J.-S. Jang, W.-T. Koo, S.-J. Choi, and I.-D. Kim, "Metal Organic Framework-Templated Chemiresistor: Sensing Type Transition from P-to-N Using Hollow Metal Oxide Polyhedron via Galvanic Replacement", J. Am. Chem. Soc., Vol. 139, No. 34, pp. 11868-11876, 2017. https://doi.org/10.1021/jacs.7b05246
  27. J.-S. Jang, S.-E. Lee, S.-J. Choi, W.-T. Koo, D.-H. Kim, H. Shin, H. J. Park, and I.-D. Kim, "Heterogeneous, Porous 2D Oxide Sheets via Rapid Galvanic Replacement: Toward Superior HCHO Sensing Application", Adv. Funct. Mater., Vol. 29, No. 42, pp. 1903012(1)-1903012(10), 2019.
  28. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide semiconductor gas sensors", Catal. Surv. Asia, Vol. 7, No. 1, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
  29. W. Wei, S. Guo, C. Chen, L. Sun, Y. Chen, W. Guo, and S. Ruan, "High sensitive and fast formaldehyde gas sensor based on Ag-doped $LaFeO_3$ nanofibers", J. Alloy. Comp., Vol. 695, No. 1, pp. 1122-1127, 2017. https://doi.org/10.1016/j.jallcom.2016.10.238
  30. Y.-Y. Xue, J.-L. Wang, S.-N. Li, Y.-C. Jiang, M.-C. Hu, and Q.-G. Zhai, "Mesoporous $Ag/In_2O_3$ composite derived from indium organic framework as high performance formaldehyde sensor", J. Solid State Chem., Vol. 251, No. 1, pp. 170-175, 2017. https://doi.org/10.1016/j.jssc.2017.04.024
  31. J. Deng, L. Wang, Z. Lou, and T. Zhang, "Design of CuO-$TiO_2$ heterostructure nanofibers and their sensing performance", J. Mater. Chem. A, Vol. 2, No. 24, pp. 9030-9034, 2014. https://doi.org/10.1039/c4ta00160e
  32. J.-Y. Kang, J.-S. Jang, W.-T. Koo, J. Seo, Y. Choi, M.-H. Kim, D.-H. Kim, H.-J. Cho, W. Jung, and I.-D. Kim, "Perovskite $La_{0.75}Sr_{0.25}Cr_{0.5}Mn_{0.5}O_{3-{\delta}}$ sensitized $SnO_2$ fiber-intube scaffold: highly selective and sensitive formaldehyde sensing", J. Mater. Chem. A, Vol. 6, No. 22, pp. 10543-10551, 2018. https://doi.org/10.1039/C8TA02725K
  33. Y. J. Jeong, D.-H. Kim, J.-S. Jang, J.-Y. Kang, R. Kim, and I.-D. Kim, "Bio-inspired heterogeneous sensitization of bimetal oxides on $SnO_2$ scaffolds for unparalleled formaldehyde detection", Chem. Commun., Vol. 55, No. 25, pp. 3622-3625, 2019. https://doi.org/10.1039/c8cc09882d