참고문헌
- J. Park, J. Lee, J. Park, J. Ha, J. Nam, "Representation Learning of Music Using Artist Labels", Proceeding of International Society for Music Information Retrieval Conference, Paris, France, pp. 717-724, 2018.
- B. Logan, A. Salomon, "A Music Similarity Function Based on Signal Analysis", ICME, Tokyo, Japen, pp. 22-25, 2001.
- H. Eghbal-Zadeh, B. Lehner, M. Schedl, G. Widmer, "I-Vectors for Timbre-Based Music Similarity and Music Artist Classification", Proceeding of International Society for Music Information Retrieval Conference, Malaga ,Spain pp. 554-560, 2015.
- C. I. Wang, G. Tzanetakis, "Singing style investigation by residual siamese convolutional neural networks", Proceeding of International Conference Acoustic, Speech and Signal Processing, Calgary, Canada, pp. 116-120, 2018.
- K. Lee, J. Nam, "LEARNING A JOINT EMBEDDING SPACE OF MONOPHONIC AND MIXED MUSIC SIGNALS FOR SINGING VOICE", Proceeding of International Society for Music Information Retrieval Conference, Delft, Netherlands, 2019.
- S. Uhlich, M. Porcu, F. Giron, M. Enenkl, T. Kemp, N. Takahashi, Y. Mitsufuji, "Improving music source separation based on deep neural networks through data augmentation and network blending", Proceeding of International Conference Acoustic, Speech and Signal Processing, New Orleans, LA, USA, pp. 261-265, 2017.
- A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, T. Weyde, "Singing voice separation with deep U-Net convolutional networks", Proceeding of International Society for Music Information Retrieval Conference, Suzhou, China, pp. 745-751, 2017.
- D. Stoller, S. Ewert, S. Dixon, "Wave-u-net: A multi- scale neural network for end-to-end source separation", Proceeding of International Society for Music Information Retrieval Conference, Paris, France, pp. 334-340, 2018.
- D. Ward, R. D. Mason, C. Kim, F. R. Stoter, A. Liutkus, M. Plumbley, "SISEC 2018: state of the art in musical audio source separation-Subjective selection of the best algorithm", proceeding of the 4th Workshop on Intelligent Music Production, 2018.
-
Z. Rafii, A. Liutkus, F. R. Stoter, S. I. Mimilakis, R. Bittener, "The MUSDB18 corpus for music separation", 2017 Zafar Rafii, Antoine Liutkus, Fabian Rovert-Stoter, Stylianos loannis Mimiiakis, Rachel Bittner. MUSDB18 - a corpus for music separation, 2017, <10.5281/zenodo.1117371>.
- R. Bittener, J. Salamon, M. Tierney, M. Mauch, C. Cannam, J. P. Bello, "MedleyDB: A multitrack dataset for annotation-intensive mir research, Proceeding of International Society for Music Information Retrieval Conference, Taipei, Taiwan, pp. 155-160, 2014.
- J. Schluter, T. Grill, "Exploring Data Augmentation for Improved Singing Voice Detection with Neural Networks", Proceeding of International Society for Music Information Retrieval Conference, Malaga, Spain, pp. 121-126, 2015.
- K. Lee, K. Choi, J. Nam, "Revisiting Singing Voice Detection: a quantitative review and the future outlook", Proceeding of International Society for Music Information Retrieval Conference, Paris, France, pp. 506-513, 2018.
- J. Schluter, "Learning to pinpoint singing voice from weakly labeled examples", Proceeding of International Society for Music Information Retrieval Conference, New York, USA, pp. 44-50, 2016.
- B. Mcfee, C. Raffel, D. Liang, D. P. Ellis, M. McVicar, E. Battenberg, O. Neito, "Librosa: Audio and music signal analysis in python", Proceeding of the 14th Python in Science Conference, 2015.
- M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Kudlur, "Tensorflow: a system for large-scale machine learning", Proceeding of the 12th USENIX conference on OSDI, 2016.