Abstract
Slip form method is applied to many cases of a shaft these days because it is safer, more economical and faster than cast-in-place method. Slip-up height of the method is approximately 2.5 to 4.0 m/day. If the temperature of concrete is outside the range of 10 to 30℃, the effects of changes in strength or elastic characteristics are significant. Therefore, it is difficult for slip-up speed to be higher than 3 m/day during winter construction. In addition, concrete has heat caused by hydration, which causes temperature cracking of hardened concrete. Therefore, temperature control of concrete curing is necessary for the continuous slip-up of slip form. In this study, the rebound hardness, time of ultrasonic waves propagation, heat of hydration, and external temperature are measured by developing heating panels and test devices for the continuous slip-up. Based on this, heating slip form is manufactured; this was applied to "Kimpo sites" and "Sinwol sites". The compared slip-up speed samples were 1.9 m/day or 0.200 m/hr on average at Gimpo sites (08:00~17:30) and 2.0 m/day or 0.210 m/hr at Sinwol sites.
최근에는 수직구 구조물 시공방법으로 현장타설 공법 대비 시공속도가 빠르며, 안전하고 경제적인 연속상승 슬립폼 공법이 다수의 현장에 적용되고 있다. 슬립폼 공법으로 시공 가능한 높이는 2.5~4 m/day로 알려져 있는데, 콘크리트 온도가 10~30℃의 범위 밖에서는 강도 변화나 탄성 특성의 변화에 미치는 영향이 크므로 동절기 공사에서는 3 m/day 이상의 시공속도를 내기가 어렵다. 또한, 콘크리트는 수화 작용으로 인해 수화열이 발생하는데, 이는 콘크리트의 온도 균열을 초래한다. 따라서 슬립폼 연속상승시 콘크리트의 온도 제어 양생이 필요하며, 본 연구에서는 히팅 패널 및 시험용 연속상승 장치를 개발하여 반발경도, 초음파 전파시간, 수화열 및 외부온도를 측정하였다. 이를 기반으로 히팅슬립폼을 제작하였으며, "김포 현장"과 "신월 현장"에 히팅슬립폼을 적용하였다. 김포현장은 주간(08:00~17:30) 평균 1.9 m/day 또는 0.200 m/hr, 신월 현장은 2.0 m/day 또는 0.210 m/hr를 목표 상승속도 값으로 비교하였다.