DOI QR코드

DOI QR Code

다양한 고적색편이 별탄생 모형에 따른 우주 재이온화 역사의 변이

HOW MODEL VARIANCE IN HIGH-REDSHIFT STAR FORMATION SHAPES COSMIC REIONIZATION HISTORY

  • 안경진 (조선대학교 지구과학교육과)
  • Ahn, Kyungjin (Department of Earth Sciences, Chosun University)
  • 투고 : 2019.11.21
  • 심사 : 2019.12.10
  • 발행 : 2019.12.31

초록

We present a semi-analytical method to calculate the global evolution of the ionized state of the intergalactic medium, on the basis of physically motivated star formation histories in the early universe. This method incorporates not only the conventional scenarios in which the star formation rate is proportional to the growth rate of the halo collapse fraction, but also the more sophisticated scenarios in which the star formation is self-regulated. We show that this variance in the star-formation model strongly impacts the resulting reionization history, which bears a prospect for observational discrimination of these models. We discuss how observations of the anisotropic polarization of the cosmic microwave background and the global 21cm signal from the high-redshift universe, most notably by Planck and EDGES, may probe the history of reionization.

키워드

참고문헌

  1. Abel, T., Bryan, G. L., & Norman, M. L., 2002, The Formation of the First Star in the Universe, Science, 295, 93 https://doi.org/10.1126/science.1063991
  2. Ahn, K., Iliev, I. T., Shapiro, P. R., et al. 2012, Detecting the Rise and Fall of the First Stars by Their Impact on Cosmic Reionization, ApJL, 756, L16 https://doi.org/10.1088/2041-8205/756/1/L16
  3. Ahn, K., Iliev, I. T., Shapiro, P. R., & Srisawat, C., 2015, Non-linear Bias of Cosmological Halo Formation in the Early Universe, MNRAS, 450, 1486 https://doi.org/10.1093/mnras/stv704
  4. Ahn, K., Shapiro, P. R., Iliev, I. T., Mellema, G., & Pen, U., 2009, The Inhomogeneous Background Of $H_2$-Dissociating Radiation during Cosmic Reionization, ApJ, 695, 1430 https://doi.org/10.1088/0004-637X/695/2/1430
  5. Barkana, R., 2018, Possible Interaction between Baryons and Dark-matter Particles Revealed by the First Stars, Nature, 555, 71 https://doi.org/10.1038/nature25791
  6. Becker, R. H., Fan, X.,White, R. L., et al., 2001, Evidence for Reionization at z-6: Detection of a Gunn-Peterson Trough in a z=6.28 Quasar, AJ, 122, 2850 https://doi.org/10.1086/324231
  7. Bowman, J. D. & Rogers, A. E. E., 2010, A Lower Limit of ${\Delta}$z > 0.06 for the Duration of The Reionization Epoch, Nature, 468, 796 https://doi.org/10.1038/nature09601
  8. Bowman, J. D., Rogers, A. E. E., Monsalve, R. A., Mozdzen, T. J., & Mahesh, N., 2018, An Absorption Pro le Centred at 78 Megahertz in the Sky-Averaged Spectrum, Nature, 555, 67 https://doi.org/10.1038/nature25792
  9. Bromm, V., Coppi, P. S., & Larson, R. B., 2002, The Formation of the First Stars. I. The Primordial Star-forming Cloud, ApJ, 564, 23 https://doi.org/10.1086/323947
  10. Bromm, V., Yoshida, N., & Hernquist, L., 2003, The First Supernova Explosions in the Universe, ApJL, 596, L135 https://doi.org/10.1086/379359
  11. Calverley, A. P., Becker, G. D., Haehnelt, M. G., & Bolton, J. S., 2011, Measurements of the Ultraviolet Background at 4.6 < z < 6.4 Using the Quasar Proximity Effect, MNRAS, 412, 2543 https://doi.org/10.1111/j.1365-2966.2010.18072.x
  12. Fan, X., Narayanan, V. K., Strauss, M. A., et al., 2002, Evolution of the Ionizing Background and the Epoch of Reionization from the Spectra of z-6 Quasars, AJ, 123, 1247 https://doi.org/10.1086/339030
  13. Furlanetto, S. R., 2006, The Global 21-centimeter Background from High Redshifts, MNRAS, 371, 867 https://doi.org/10.1111/j.1365-2966.2006.10725.x
  14. Furlanetto, S. R. & Oh, S. P., 2005, Taxing the Rich: Recombinations and Bubble Growth during Reionization, MNRAS, 363, 1031 https://doi.org/10.1111/j.1365-2966.2005.09505.x
  15. Haiman, Z. & Holder, G. P., 2003, The Reionization History at High Redshifts. I. Physical Models and New Constraints from Cosmic Microwave Background Polarization, ApJ, 595, 1 https://doi.org/10.1086/377337
  16. Heinrich, C. & Hu, W., 2018, Does Planck 2015 Polarization Data Favor High Redshift Reionization?, PRD, 98, 063514 https://doi.org/10.1103/PhysRevD.98.063514
  17. Hills, R., Kulkarni, G., Meerburg, P. D., & Puchwein, E., 2018, Concerns about Modelling of the EDGES Data, Nature, 564, E32 https://doi.org/10.1038/s41586-018-0796-5
  18. Hirano, S., Hosokawa, T., Yoshida, N., et al., 2014, One Hundred First Stars: Protostellar Evolution and the Final Masses, ApJ, 781, 60 https://doi.org/10.1088/0004-637X/781/2/60
  19. Iliev, I. T., Mellema, G., Ahn, K., et al., 2014, Simulating Cosmic Reionization: How Large a Volume is Large Enough?, MNRAS, 439, 725 https://doi.org/10.1093/mnras/stt2497
  20. Iliev, I. T., Mellema, G., Pen, U.-L., et al., 2006, Simulating Cosmic Reionization at Large Scales - I. The Geometry of Reionization, MNRAS, 369, 1625 https://doi.org/10.1111/j.1365-2966.2006.10502.x
  21. Iliev, I. T., Mellema, G., Shapiro, P. R., & Pen, U., 2007, Self-regulated Reionization, MNRAS, 376, 534 https://doi.org/10.1111/j.1365-2966.2007.11482.x
  22. Iliev, I. T., Scannapieco, E., & Shapiro, P. R., 2005, The Impact of Small-Scale Structure on Cosmological Ionization Fronts and Reionization, ApJ, 624, 491 https://doi.org/10.1086/429083
  23. Kimm, T., Katz, H., Haehnelt, M., et al., 2017, Feedback-regulated Star Formation and Escape of LyC Photons from Mini-haloes during Reionization, MNRAS, 466, 4826
  24. Lee, A., Ade, P. A. R., Akiba, Y., et al., 2019, LiteBIRD: An All-sky Cosmic Microwave Background Probe of In ation, in BAAS, Vol. 51, 286. https://ui.adsabs.harvard.edu/abs/2019BAAS...51g.286L
  25. Mao, Y., Koda, J., Shapiro, P. R., et al., 2019, The Impact of Inhomogeneous Subgrid Clumping on Cosmic Reionization, arXiv e-prints, arXiv:1906.02476.
  26. Miranda, V., Lidz, A., Heinrich, C. H., & Hu, W., 2017, CMB Signatures of Metal-free Star Formation and Planck 2015 Polarization Data, MNRAS, 467, 4050 https://doi.org/10.1093/mnras/stx306
  27. Ocvirk, P., Gillet, N., Shapiro, P. R., et al., 2016, Cosmic Dawn (CoDa): the First Radiation-Hydrodynamics Simulation of Reionization and Galaxy Formation in the Local Universe, MNRAS, 463, 1462 https://doi.org/10.1093/mnras/stw2036
  28. O'Shea, B. W. & Norman, M. L., 2008, Population III Star Formation in a CDM Universe. II. Effects of a Photodissociating Background, ApJ, 673, 14 https://doi.org/10.1086/524006
  29. Osterbrock, D. E., 1989, Astrophysics of gaseous nebulae and active galactic nuclei (University Science Books), p.422
  30. Park, H., Shapiro, P. R., Komatsu, E., et al., 2013, The Kinetic Sunyaev-Zel'dovich Effect as a Probe of the Physics of Cosmic Reionization: The Effect of Self-regulated Reionization, ApJ, 769, 93 https://doi.org/10.1088/0004-637X/769/2/93
  31. Pawlik, A. H., Schaye, J., & van Scherpenzeel, E., 2009, Keeping the Universe Ionized: Photoheating and the Clumping Factor of the High-redshift Intergalactic Medium, MNRAS, 394, 1812 https://doi.org/10.1111/j.1365-2966.2009.14486.x
  32. Pentericci, L., Fontana, A., Vanzella, E., et al., 2011, Spectroscopic Con rmation of z - 7 Lyman Break Galaxies: Probing the Earliest Galaxies and the Epoch of Reionization, ApJ, 743, 132 https://doi.org/10.1088/0004-637X/743/2/132
  33. Planck Collaboration, Aghanim, N., Akrami, Y., et al., 2018, Planck 2018 Results. VI. Cosmological Parameters, arXiv e-prints, arXiv:1807.06209
  34. Pritchard, J. R. & Furlanetto, S. R., 2006, Descending from on High: Lyman-series Cascades and Spin-kinetic Temperature Coupling in the 21-cm Line, MNRAS, 367, 1057 https://doi.org/10.1111/j.1365-2966.2006.10028.x
  35. Pritchard, J. R. & Loeb, A., 2012, 21 cm Cosmology in the 21st Century, Reports on Progress in Physics, 75, 086901 https://doi.org/10.1088/0034-4885/75/8/086901
  36. Reichardt, C. L., Shaw, L., Zahn, O., et al., 2012, A Measurement of Secondary Cosmic Microwave Background Anisotropies with Two Years of South Pole Telescope Observations, ApJ, 755, 70 https://doi.org/10.1088/0004-637X/755/1/70
  37. Seager, S., Sasselov, D. D., & Scott, D., 1999, A New Calculation of the Recombination Epoch, ApJL, 523, L1 https://doi.org/10.1086/312250
  38. Shapiro, P. R. & Giroux, M. L., 1987, Cosmological H II regions and the Photoionization of the Intergalactic Medium, ApJ, 321, L107 https://doi.org/10.1086/185015
  39. Shapiro, P. R., Iliev, I. T., & Raga, A. C., 2004, Photoevaporation of Cosmological Minihaloes during Reionization, MNRAS, 348, 753 https://doi.org/10.1111/j.1365-2966.2004.07364.x
  40. So, G. C., Norman, M. L., Reynolds, D. R., & Wise, J. H., 2014, Fully Coupled Simulation of Cosmic Reionization. II. Recombinations, Clumping Factors, and the Photon Budget for Reionization, ApJ, 789, 149 https://doi.org/10.1088/0004-637X/789/2/149
  41. Tumlinson, J. & Shull, J. M., 2000, Zero-Metallicity Stars and the Effects of the First Stars on Reionization, ApJL, 528, L65 https://doi.org/10.1086/312432
  42. Turk, M. J., Abel, T., & O'Shea, B., 2009, The Formation of Population III Binaries from Cosmological Initial Conditions, Science, 325, 601 https://doi.org/10.1126/science.1173540
  43. Yoshida, N., Abel, T., Hernquist, L., & Sugiyama, N., 2003, Simulations of Early Structure Formation: Primordial Gas Clouds, Astrophys. J., 592, 645 https://doi.org/10.1086/375810
  44. Yoshida, N., Omukai, K., Hernquist, L., & Abel, T., 2006, Formation of Primordial Stars in a ACDM Universe, Astrophys. J., 652, 6 https://doi.org/10.1086/507978
  45. Zahn, O., Reichardt, C. L., Shaw, L., et al., 2012, Cosmic Microwave Background Constraints on the Duration and Timing of Reionization from the South Pole Telescope, ApJ, 756, 65 https://doi.org/10.1088/0004-637X/756/1/65