References
- F. Rudzicz, Production knowledge in the recognition of dysarthric speech, Ph.D. Thesis, Dept. Comput. Sci, Toronto University, Canada, 2011.
- V. Poblete et al., A perceptually-motivated low-complexity instantaneous linear channel normalization technique applied to speaker verification, Comput. Speech Lang. 31 (2015), no. 1, 1-27. https://doi.org/10.1016/j.csl.2014.10.006
- M. J. Kim, Y. Kim, and H. Kim, Automatic intelligibility assessment of dysarthric speech using phonologically-structured sparse linear model, IEEE/ACM Trans. Audio, Speech, Lang. Process. 23 (2015), no. 4, 694-704. https://doi.org/10.1109/TASLP.2015.2403619
- B. Schuller et al., A survey on perceived speaker traits: Personality, likability, pathology, and the first challenge, Comput. Speech Lang. 29 (2015), no. 1, 32. https://doi.org/10.1016/j.csl.2014.07.001
- K. L. Kadi et al., Fully automated speaker identification and intelligibility assessment in dysarthria disease using auditory knowledge, Biocybernetics Biomed. Eng. 36 (2016), no. 1, 233-247. https://doi.org/10.1016/j.bbe.2015.11.004
- X. Menendez-Pidal et al., The nemours database of dysarthric speech, Proc. Int. Conf. Spoken Lang., Philadelphia, PA, USA, Oct. 3-6, 1996, pp. 1962-1965.
- F. Rudzicz, A. K. Namasivayam, and T. Wolff, The TORGO database of acoustic and articulatory speech from speakers with dysarthria, Lang. Resour. Eval. 46 (2012), no. 4, 523-541. https://doi.org/10.1007/s10579-011-9145-0
- H. Kim et al., Dysarthric speech database for universal access research, Interspeech 2008 (2008), 1741-1744.
- S. R. Shahamiri, B. Salim, and S. Salwah, A multi-views multilearners approach towards dysarthric speech recognition using multi-nets artificial neural networks, IEEE Trans. Neural Syst. Rehabil. Eng. 22 (2014), no. 5, 1053-1063. https://doi.org/10.1109/TNSRE.2014.2309336
- S.-O. Caballero-Morales and F. Trujillo-Romero, Evolutionary approach for integration of multiple pronunciation patterns for enhancement of dysarthric speech recognition, Expert Syst. Applicat. 41 (2014), no. 3, 841-852. https://doi.org/10.1016/j.eswa.2013.08.014
- S. R. Shahamiri and S. S. B. Salim, Artificial neural networks as speech recognisers for dysarthric speech: Identifying the best-performing set of MFCC parameters and studying a speaker-independent approach, Adv. Eng. Inform. 28 (2014), no. 1, 102-110. https://doi.org/10.1016/j.aei.2014.01.001
- G. Hinton et al., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups, IEEE Signal Process. Mag. 29 (2012), no. 6, 82-97. https://doi.org/10.1109/MSP.2012.2205597
- Z.-H. Ling et al., Deep learning for acoustic modeling in parametric speech generation: A systematic review of existing techniques and future trends, IEEE Signal Process. Mag. 32 (2015), no. 3, 35-52. https://doi.org/10.1109/MSP.2014.2359987
- F. Rudzicz, Articulatory knowledge in the recognition of dysarthric speech, IEEE Trans. Audio Speech Lang. Process. 19 (2011), no. 4, 947-960. https://doi.org/10.1109/TASL.2010.2072499
- R. Palmer and P. Enderby, Methods of speech therapy treatment for stable dysarthria: A review, Int. J. Speech-Lang. Pathol. 9 (2007), no. 2, 140-153. https://doi.org/10.1080/14417040600970606
- T. Kinnunen and L. Haizhou, An overview of text-indepedent speaker recognition from features to supervectores, Speech Commun. 52 (2010), no. 1, 12-40. https://doi.org/10.1016/j.specom.2009.08.009
- X.-L. Zhang and J. Wu, Deep belief networks based voice activity detection, IEEE Trans. Audio Speech Lang. Process. 21 (2013), no. 4, 697-710. https://doi.org/10.1109/TASL.2012.2229986
- J. Sohn and W. Sung, A voice activity detector employing soft decision based noise spectrum adaptation, IEEE Int. Conf. Acoustics, Speech, Signal Process., Seattle, WA, USA, May 15, 1998, pp. 365-368.
- S. B. Davis and P. Mermelstein, Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences, IEEE Trans. Acoust. Speech Signal Process. 28 (1980), no. 4, 357-366. https://doi.org/10.1109/TASSP.1980.1163420
- H. Hermansky, Perceptual linear predictive (PLP) analysis of speech, J. Acoust. Soc. Am. 87 (1990), no. 4, 1738-1752. https://doi.org/10.1121/1.399423
- G. E. Hinton, Training products of experts by minimizing contrastive divergence, Neural Comput. 14 (2002), no. 8, 1771-1800. https://doi.org/10.1162/089976602760128018
- N. Dehak et al., Front-end factor analysis for speaker verification, IEEE Trans. Audio Speech Lang. Process. 19 (2011), no. 4, 788-798. https://doi.org/10.1109/TASL.2010.2064307
- M. A. Keyvanrad and M. M. Homayounpour, A brief survey on deep belief networks and introducing a new object oriented MATLAB toolbox (DeeBNet), arXiv preprint arXiv:1408.3264, 2014.
Cited by
- Feature Recognition of English Based on Deep Belief Neural Network and Big Data Analysis vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/5609885