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In this paper, we propose a grant-aware (GA)
scheduling algorithm that can provide higher
throughput and lower latency than a conventional dual
round-robin matching (DRRM) method. In our
proposed GA algorithm, when an output receives
requests from different inputs, the output not only
sends a grant to the selected input, but also sends a
grant indicator to all the other inputs to share the
grant information. This allows the inputs to skip the
granted outputs in their input arbiters in the next
iteration. Simulation results using OPNET show that
the proposed algorithm provides a maximum 3%
higher throughput with approximately 31% less
queuing delay than DRRM.

Keywords: Grant-aware, High performance, Input-
buffered switch, Scheduling, Low latency, Maximal
matching algorithm.

I. Introduction

The recent exponential growth of Internet traffic and
newly emerging data-intensive applications, such as
streaming video, social networking, and cloud computing,
requires networks that have much higher bandwidth and
lower latency [1]–[4]. Because of the new traffic
characteristics and the delay requirement of DC networks,
control architectures [5] and scheduling algorithms [6], [7]
have been widely investigated.
To accommodate these requirements, fast and high-

capacity switching structures and corresponding fast
control schemes have been proposed [4], [8]–[10].
High-speed switches are built around a virtual output
queue (VOQ)-based input-buffered switch architecture
in order to eliminate the head-of-line (HOL) blocking,
and a centralized scheduler uses a fixed-size time slot
as a transfer unit. Variable-length packets are framed
to a fixed-size synchronized time slot and transferred
across the central switching fabric [10]–[15]. Most
studies on scheduling algorithms have focused on the
contention resolution problem in VOQ-based input
buffered switches because the problem of HOL
blocking was eliminated using VOQ [4], [12]–[14],
[16]–[22].
Maximum matching algorithms, such as longest queue

first (LQF), oldest cell first, and longest port first (LPF),
guarantee 100% throughput under uniform traffic
conditions. However, it is known that under nonuniform
traffic conditions, LQF and LPF can lead to instability and
starvation [4], [11], [12], [14]. Furthermore, their practical
implementation is difficult owing to their high complexity.
Recently, much attention has been given to maximal
matching algorithms as a fast, efficient, and feasible packet
switching scheduler [12], [16]–[25], because their
implementation complexity is significantly lower than
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maximum matching algorithms, although they are sub-
optimal.
Maximal matching algorithms, including parallel

iterative matching (PIM) [19], iterative round-robin
matching (iRRM) [20], FIRM [21], iterative round-robin
with SLIP (iSLIP) [22], and dual round-robin matching
(DRRM) [23], [24] were proposed as a technique to
enable ease of implementation. Among them, DRRM
and iSLIP are widely used for the scheduling of packet
switches because they can provide fairness, higher
efficiency, and a desynchronization effect. In particular,
DRRM is preferred for large-scale switches owing to its
faster arbitration and relative ease of implementation
compared to iSLIP [25]. To maximize the number of
input and output matching, the maximal matching
algorithm is generally combined with multiple iterations.
This achieves higher throughput and less delay than
with a single iteration. Maximal matching algorithms
can provide throughput values that are as high as
maximum matching algorithms that use multiple
iterations. It is known that a maximal match can always
be found within N iterations, where N denotes the
number of ports in the switch. DRRM and iSLIP can
achieve a maximal matching with a reduced number of
iterations, log2N [12], [22]–[25]. In practical terms, with
large switches, the maximal matching algorithm should
be applied within a limited time, and the maximum
allowed number of iterations can be reduced owing to
the capacity of the processing hardware. This limits the
maximum size of the switch that can be implemented. If
a sufficient number of iterations are not allowed, the
performance may be degraded. This constraint can be
alleviated using a scheduling algorithm that can apply a
smaller number of iterations than existing algorithms.
In this study, we propose a grant-aware (GA) scheduling

algorithm to provide better performance than existing
DRRM. In the proposed scheme, we use the grant
indicator so that all inputs share output-grant information.
The output sends the grant to the selected input and the
grant indicator to all the remaining inputs. Hence, the
inputs know which outputs have already been matched for
this time slot and exclude them in the next round of
iteration.
The remainder of this paper is organized as follows. In

Section II, an overview of DRRM scheduling and its
problem are shown. In Section III, the proposed GA
scheduling algorithm is described in detail. In Section IV,
we evaluate its performance in terms of throughput and
queuing delay by performing a simulation using OPNET
followed by some concluding remarks in Section V.

II. Dual Round-Robin Matching Algorithm

As previously mentioned, DRRM [12], [23], [24]
provides the least hardware complexity among the
existing maximal matching algorithms by performing
two-phase scheduling. Other maximal matching
algorithms, such as PIM [19], iRRM [20], FIRM [21],
and iSLIP [22] perform three-phase scheduling in each
iteration. PIM uses random selection arbiters to perform
input-output matching in both grant and accept phases.
iRRM uses round-robin (RR) arbiters instead of random
selection for input-output matching. Arbiters of iRRM
update their RR pointers immediately after selecting one
request in the grant phase or one output in the accept
phase. Under uniform traffic conditions, PIM provides a
throughput of approximately 65% at a single iteration
and a 100% throughput with N iterations when the
switch size is N 9 N [12]. While PIM brings unfairness
and a high cost for the implementation of random
functions at high speed, iRRM provides good fairness
using a RR manner, but only a 50% throughput under
heavy load conditions owing to the output pointer
update mechanism [12]. To solve this problem of
iRRM, iSLIP was proposed. In iSLIP, outputs
increment their arbiter pointers only when their grants
are accepted by inputs. iSLIP can achieve a 100%
throughput with a single iteration under uniform and
independent and identically distributed (i.i.d) traffic.
Similar to iSLIP, FIRM also uses RR arbiters for input-
output matching. In FIRM, if the grant is not accepted,
its RR arbiter is set to the granted input. If the grant is
accepted, the output RR pointer is incremented by 1 to
the granted input. Using this scheme for output arbiter
updates, FIRM can provide more fairness than iSLIP
[12].
Similar to iSLIP, DRRM [23], [24] uses RR arbiters for

input-output matching at both inputs and outputs. Each
input arbiter maintains the VOQ status of its
corresponding input port and requests based on a
nonempty VOQ status to one corresponding output.
DRRM operates in two phases, the request and grant
phases, during each iteration as follows.

• Request: Each input sends an output request for the first
nonempty VOQ based on an RR pointer of the input
arbiter, starting from the current position of the pointer.
The pointer is incremented by 1 only when the request is
granted; otherwise, it remains unchanged.

• Grant: If an output receives one or more requests, it
chooses one using the output arbiter, starting from the
current position of the RR pointer. The output notifies
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each requested input whether it was granted or not. The
RR pointer of the output arbiter is incremented by 1
from the granted input. If there are no requests, the
pointer remains unchanged.
For multiple iterations, the scheduler repeats the request

and grant processes, and only those inputs and outputs that
are not matched at the end of the previous iteration are
eligible for participation in the next matching iteration.
Here, both the input and output arbiter pointers are
updated only at the first iteration. The DRRM performs
arbitration faster than other algorithms with similar
performance owing to its lower implementation
complexity because it has less information exchange
between input and output arbiters. Thus, DRRM can
provide not only 100% throughput under i.i.d. and
uniform traffic, but also scalability and fairness without
the starvation problem [12].
Figure 1 shows an example of a DRRM algorithm

operation for mapping between inputs and outputs in a
4 9 4 switch. Here, the maximum required number of
iterations, kmax, is 2 [= (log2N) with N = 4]. In Fig. 1(a),
the inputs of I1, I2, I3, and I4, which have nonempty
VOQs, send requests to their selected outputs, O2, O1,
O2, and O2, respectively, during the request phase. In
Fig. 1(b), the output O2 receives multiple requests from
inputs I1, I3, and I4, and it grants the request from the
selected input I1 based on its RR pointer. The output RR
pointers of O1 and O2 are now pointing at 3 and 2,
respectively. In Fig. 1(c), the inputs I3 and I4, which have
a nonempty VOQ and have not yet been granted, send

requests to outputs O3 and O4 based on their RR arbiters,
respectively. In Fig. 1(d), I3 and I4 are granted from O3
and O4, respectively. Both input arbiter and output arbiter
pointers remain the same. Note that the pointers of all
arbiters are updated during the first iteration only. As
described above, in DRRM, an input selects one of its
nonempty VOQs using the RR manner, and sends a
request to the corresponding output. If the output has been
matched in a previous iteration, this request is in vain and
the input wastes the opportunity. If inputs know the output
matching information of the previous iterations, they can
send a request only to unmatched outputs.
An example is shown in Fig. 2. In Fig. 2(a), all inputs

send requests, and inputs I1, I3, and I4 are granted to
outputs O1, O2, and O3, respectively, during the first
iteration. However, input I2 fails to obtain the grant from
output O1. The input I2 conducts the second iteration, as
shown in Fig. 2(b). It selects the next nonempty VOQ and
sends the request to the corresponding output O2.
However, O2 has been matched with I3 in the previous
iteration. It takes two more iterations for input I2 to find
the available output O4 because input I2 does not know
that the outputs O2 and O3 have already been matched
during the first iteration. To avoid this inefficiency, the
inputs need to know the grant status of all outputs in the
previous iterations.

III. Grant-Aware Scheduling Algorithm

To improve the performance of existing DRRM, we
introduce a grant-aware (GA) scheme, where the matching
status of the outputs is shared by all inputs during each
iteration.
The scheduler gets the information of all VOQs at the

beginning of every time slot. If a VOQ is not empty, its
VOQ status is set to one; otherwise, it is set to zero. After
the VOQ status setting is completed, the scheduler
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Fig. 1. Operation of DRRM over a 4 9 4 switch: (a), (b) the
first iterations, and (c), (d) the next iteration cycle.
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Fig. 2. Example of inefficient iterations in DRRM: (a) request-
grant process in the 1st iteration and (b) request-grant
process in the 2nd iteration
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performs a GA algorithm for maximal matching for all
inputs and outputs.
First, each input selects one nonempty VOQ with the

input arbiter and sends a request to the corresponding
output. The output selects an input among the requesting
inputs and allocates a time slot to the selected input. The
output sends a grant to the selected input, as well as a
grant indicator to all other inputs to share the output
granted information.
We define Gij and Iij as the grant and grant indicator from

output j to input i, respectively, which indicate the following.

• Gij: The request is granted. Output j will match with
input i in this time slot.

• Iij: Output j is matched and no further request will be
accepted in this time slot.
The pointer of the output arbiter is incremented to the

location next to the granted input. The granted inputs, that
is, Gij = true, update their input arbiter’s pointers to the
location next to the selected output during the first
iteration, and they reset all of their VOQ statuses. These
granted inputs are excluded from the next iteration. All the
non-granted inputs reset the already matched j-th VOQ
status if Iij = true, according to the output granted
information. During the next iteration, the inputs that have
not yet been granted select one output with a new VOQ
status and send requests. This iteration procedure is
repeated up to kmax times. After completing the
scheduling, the scheduler returns the scheduling result
with a grant message to all input nodes. The input nodes
transmit the data to the destined output nodes through the
allocated time slot.
Figure 3 shows the operation of our GA scheduling

algorithm in a 4 9 4 switch. All inputs make a request to
their selected output based on the nonempty VOQ status
and RR input arbiter, as shown in Fig. 3(a). During the
grant phase of Fig. 3(b), outputs O1 and O2 select inputs
I2 and I1, respectively. Output O1 grants input I2, and it
simultaneously sends grant indicators to other inputs I1,
I3, and I4. Output O2 grants input I1, and it also sends
grant indicators to all other inputs I2, I3, and I4. Outputs
O1 and O2 update their output arbiter pointers to 3 and 2,
respectively. The granted inputs I1 and I2 update their
input arbiter pointers to 3 and 2, respectively, and they
reset all of their VOQ statuses. They then ignore the
received grant indicators. Inputs I3 and I4 receive two
grant indicators from outputs O1 and O2, and they reset
their VOQ status of {VOQ31, VOQ32} and {VOQ41,
VOQ42}, respectively. In the request phase of the next
iteration, as shown in Fig. 3(c), inputs I3 and I4 can use
the newly updated VOQ status, where the VOQs for the
matched outputs are not counted on. Thus, inputs I3 and
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Fig. 3. Operation of GA scheduling algorithm (k = 2).
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I4 can skip the process of sending a request to output O2,
and it can directly make a request to outputs O4 and O3,
respectively. During the grant phase of Fig. 3(d), inputs I3
and I4 receive grants from outputs O4 and O3,
respectively. Here, the input arbiter pointers of I3 and I4
remain the same because it is not the first iteration. The
pseudo code below shows the operation of our two-phase
GA scheduling algorithm.
Pseudo code for grant-aware scheduling algorithm:

Definition of parameters
– Nq: number of VOQs (that is, number of outputs)
– Ni: number of inputs
– IArri: input arbiter RR pointer for input i
– OArrj: output arbiter RR pointer for output j
– selectedi: indicates that any nonempty VOQ of input i is
selected

– reqji: indicates that input i sends request to output j
– granti: indicates that input i is granted
– grant_indicatorj: indicates that output j is matched with any
input.

– iteration: the remaining number of iterations. The value is
set to the required number of iterations and decremented in
each iteration.

– voqij : VOQ status corresponding output j for input i
– first_iteration: indicates whether the current iteration is the
first iteration or not

– granted_outputi: the granted output for input i

REQUEST:
For input i:
If (!iteration) scheduling_end;
Else

k = IArri;
For (j = 0; j < Nq; j++)

If (voqk! = null) selectedi = k;
reqki = 1;
break;

End if
Else

k++;
If (k > Nq) k = k % Nq;

End else
End for j
go to GRANT;

End else

GRANT:
For output j
k = OArrj;
For (i = 0; i < Ni; i++)

If (reqjk )
grantk = 1;
grant_indicatorj = 1;
If (first_iteration)
OArrj = k + 1;
If (OArrj > Ni) OArrj = OArrj% Ni;

End if
break;

End if
Else

k++;

If (k > Ni) k = k % Ni;
End else

End for i

For input i
If ((granti == 1) && (selectedi! = null))

If (first_iteration)
IArri = selectedi + 1;
If (IArri > Nq) IArri = IArri % Nq;

End if
granted_outputi = selectedi;
selectedi = 0;
For (j = 1; j < Nq; j++) voqij = 0;

End if
Else

For (j = 1; j < Nq+1; j++)
If (grant_indicatorj == 1) voqij = 0;

End for j
End else

iteration - -;
go to REQUEST;

IV. Performance Evaluation

Using the OPNET simulator, we examined the
performance of the proposed GA scheduling algorithm in
terms of the throughput and average queuing delay, and we
compared them with those of DRRM. For the simulation, we
assumed a 30 9 30 switch, whose scheduling time is within
one time slot. We also assumed that a fixed-size time slot
accommodates several Ethernet packets. When inputs
receive grants, they send Ethernet packets to their destination
for the time slot. We assigned a 1% overhead as the guard
time at the boundary of the time slots. VOQ sizes of 3 TS,
10 TS, 15 TS, 30 TS, and infinite are considered. For the
burst traffic, we used the on-off traffic model of which
the both on and off periods are exponentially distributed. The
packet length is a variable that follows the distribution of the
IP packet length [26]. Packets were generated only during
the on-period in the traffic model. The Ethernet packets that
are generated during a single on-period had the same
destination, each of which was generated with a uniform
distribution. For the performance evaluation, the throughput
(Th) and queuing delay (d) are defined as follows.

Th ¼ Dtx

Dgen
; d ¼ ta � td;

where Dtx, Dgen, ta, and td are the transmitted data,
generated data, packet arrival time in the queue, and
packet departure time from the queue, respectively.
Figure 4 shows the throughput as a function of the

offered load when the VOQ size is infinite. The
throughput starts to decrease as the offered load exceeds
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0.5. When the offered load exceeds 0.5, the throughput
increases as the number of iterations increases. The
DRRM result is improved even when the number of
iterations is increased to 5. However, in the GA case, the
result converges within three iterations, and outperforms
the DRRM result with five iterations.
Figure 5 shows the queuing delay as a function of the

offered load when the VOQ size is infinite. The queuing
delay was decreased as the number of iterations was
increased. The proposed GA algorithm provided a better
performance than DRRM. Figure 5 also shows that GA
with three iterations achieved less queuing delay than
DRRM with five iterations. When the offered load was
more than 0.7, the GA scheme reduced the delay to less
than half compared to DRRM.
Figure 6 shows the throughput of the GA algorithm with

three iterations for a VOQ size ranging from 3 TS to 30 TS.
The throughput decreased as the VOQ size decreased
because the packets were dropped when the VOQ for its
destination was full. When the offered load was 0.9, the
throughput was 65%, 85%, 92%, and 96%, for VOQ sizes
of 3 TS, 10 TS, 15 TS, and 30 TS, respectively.

Figure 7 shows the average queuing delay of the
switched packets as a function of the offered load when
the GA algorithm was applied. As the offered load
increased, the queuing delay increased. The delay
decreased when the size of VOQ was smaller because
more packets were dropped. The effect of the VOQ size
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on the delay was negligible when the offered load was
< 0.4.
Figure 8 shows the reduction rate of the delay of the

GA algorithm over DRRM with five iterations when the
offered load ranged from 0.5 to 0.9 with a finite VOQ size.
When the VOQ size was 3 TS, the delay reduction rate of
GA over DRRM was < 15%. However, for a VOQ size of
30 TS, the GA algorithm showed a maximum delay
reduction of 45% over DRRM. For VOQ sizes of 15 TS
and 10 TS, maximum delay reductions of approximately
38% and 31% were shown, respectively. When the offered
load was 0.7, the GA provided approximately 7% to 45%
less delay than DRRM.
Figure 9 shows the throughput of the GA and DRRM

when the VOQ size was 15 TS. When the offered load
was lower than 0.5, the throughput was maintained at
100%, and it decreased as the offered load increased.
When the offered load was 0.6, DRRM needed five
iterations to achieve a 100% throughput. However, GA
reached the same throughput with two iterations.

Figure 10 shows the average queuing delay of
switched packets when the VOQ size was 15 TS. As the
number of iterations increased, the queuing delay
became less. When the iterations were performed five
times (k = 5), both algorithms, GA and DRRM, showed
a similar delay at an offered load of 0.5 or less.
However, GA had a lower delay than DRRM as the
offered load increased. When the offered load was 0.9,
the GA showed a lower delay of about 100 TS than
DRRM. Even with two iterations, GA showed a lower
delay than DRRM with five iterations.

V. Conclusion

We proposed a two-phase GA scheduling algorithm
that efficiently provides higher throughput and lower
latency with a smaller number of iterations than
DRRM. Our proposed algorithm uses the output
granted indication for an efficient output selection in
subsequent iterations. We compared the performance of
the throughput and queuing delay while varying the
offered load and VOQ size using the OPNET
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simulator. The simulation results showed that the
GA provides a maximum 3% higher throughput and
31% less queuing delay than DRRM for a 30 9 30
switch.
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