ETRI Journal, Volume 40, Number 1, February 2018
http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326

111

Novel Push-Front Fibonacci Windows Model for

Finding Emerging Patterns with

Better Completeness and Accuracy

Tubagus Mohammad Akhriza, Yinghua Ma, and Jianhua Li

To find the emerging patterns (EPs) in streaming
transaction data, the streaming is first divided into
some time windows containing a number of
transactions. Itemsets are generated from transactions
in each window, and then the emergence of itemsets is
evaluated between two windows. In the tilted-time
windows model (TTWM), it is assumed that people
need support data with finer accuracy from the most
recent windows, while accepting coarser accuracy from
older windows. Therefore, a limited array’s elements
are used to maintain all support data in a way that
condenses old windows by merging them inside one
element. The capacity of elements that accommodates
the windows inside is modeled using a particular
number sequence. However, in a stream, as new data
arrives, the current array updating mechanisms lead
to many null elements in the array and cause data
incompleteness and inaccuracy problems. Two models
derived from TTWM, logarithmic TTWM and
Fibonacci windows model, also inherit the same
problems. This article proposes a novel push-front
Fibonacci windows model as a solution, and
experiments are conducted to demonstrate its
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superiority in finding more EPs compared to other
models.

Keywords: Data stream mining, Emerging patterns,
Time window models.

I. Introduction

In the information era, data is being produced and
streamed continually in large volumes and at high velocity
by a tremendous number of unusual sources such as
sensors and social media [1]. Making sense of these large
data streams is a task that continues to rely heavily on
human judgment. Thus, recognizing patterns contained in
the streaming becomes a crucial job [2], [3]. Among all
patterns, emerging patterns (EPs) are worthy of mining as
they reflect the itemsets’ popularity changes from one
period to another. The problem of mining EPs has been
well studied [4]-[7], and the EP concept has also been
broadly implemented to solve problems in many areas
such as finding changes in networks [6] and customer
behavior in online markets [7].

Streaming data can be divided and loaded into several
time windows to find an EP. A window contains several
transactions, and itemsets are generated from transactions
in each window. An itemset is said to be emerging from
two ordered windows W to W, if its support growth rate
from W; to W, satisfies a minimum support growth
(mingrowth) threshold [4]. A mechanism called the tilted-
time windows model (TTWM) is proposed to maintain the
itemsets’ support recorded in all windows [8]. The model
assumes that people need support with finer accuracy from
recent windows, but they will accept coarser accuracy
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from older windows [9], [10]. The challenge is condensing
support data stored in a large number of windows inside a
smaller number of elements of an array, that is, sup[i], in
an effective and efficient way.

The maximum number of windows that can be merged
into an array’s elements, which is called the element’s
capacity, can be modeled using a certain number
sequence. In this paper, as support data are saved in the
elements, sup[i] represents the i-th element. Element
sup[0] is particularly storing support data from the
window that is currently being processed. With a purpose
of serving the finest support values, the first few elements’
capacities are set to one window. Two models are derived
from TTWM. A model called the logarithmic tilted-time
windows model (LWin) uses a sequence G = {1; 1[1];
2[2]; 4[4]; 8[8]; and so on}. Therefore, N windows can be
accommodated in a (1 + *log(N))-elements array [10],
while another model [11], called the Fibonacci windows
model (FWin), uses a Fibonacci sequence F' = {1, 1, 2, 3,
5, and so on} to organize the elements’ capacities. Thus, N
windows are fit to an n-element array (N > n) in a relation
given by

n—1
N=Y X.supli.vol,
i=0

(1

where sup[i].vol represents the element’s volume, that is,
the number of windows being merged inside sup[i], which
is not greater than the elements’ capacity. A sequence of
elements’ volumes is called a volume sequence.

The main problem of traditional TTWM, including
LWin and FWin, is in their array updating mechanism,
which creates null elements even when they should
provide the most accurate support. This situation is a
significant disadvantage in the process to find EPs, which
checks the support growth between elements sup[0]
and sup[j], j> 0. As a consequence of such data
incompleteness, some EPs at certain time windows cannot
be found.

This article first introduces a novel model called the
push-front tilted-time windows model (PF-TTWM) as the
solution for the data incompleteness of TTWM. A push-
front mechanism is applied to eliminate nulls, and first
elements can provide support with the finest accuracy.
Second, by applying this to a Fibonacci window, a novel
push-front Fibonacci window model (PF-FWin) is
proposed. Fibonacci sequence F is used to organize an
element’s capacity so that N windows can always be
accommodated in an n-element array (N > n) by the
relation given in (1). X.sup[i].vol € {1, 2, ..., F[i]} in
PF-FWin, while in FWin, X.sup[i].vol € {0, F[i]}.
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In experiments, the performance of PF-FWin is
compared to those of FWin and LWin. Two datasets are
used: a synthetic dataset containing 1M records generated
using the IBM Quest data generator, and a real online
retail dataset containing 541,000 records from the UCI
repository. The process of accommodating N windows of
streaming data into an n-element array is implemented
using a deterministic finite automaton. Transactions are
processed by an online streaming method. The emergence
of X is evaluated by inspecting its support stored in
X.sup[0] and another X.sup[/], ; > 0. X is mined out as an
EP if X’s support and support growth meet the given
thresholds. With regard to the results, the number of EPs
found using PF-FWin was up to 90% and 275% higher
than when using LWin and FWin, respectively, in the first
experiment. In the second experiment, PF-FWin processed
more transactions than the two other models.

The rest of article is organized as follows. Section II
contains a review of the literature related to our work.
Section III defines the proposed solution. Section IV
discusses experimental work and its results, and Section V
presents the conclusion of this work.

II. Related Works

This work contributes to the area of research about
finding EPs in data streams using TTWM, which is still
very rarely found in the literature. On the other hand,
LWin was recorded as the first model that maintained the
itemsets and their support using the TTWM approach,
although it was not designed to find EPs [8]. FWin is
known as the second method that adopted TTWM. In this
section, the basic concept of EP mining is explained,
followed by details of TTWM, LWin, and FWin,
particularly in the array updating mechanism.

1. Mining the Emerging Patterns

Mining EPs has been well studied since 1999 [5]-[7],
and the implementations of EPs in many areas are found
in the literature as well. For example, implementations in
the medical area can distinguish similar diseases [12],
classify cancer diagnosis data [13], and profile leukemia
patients [14]. In the networking environment, EPs are
implemented to find significant differences in network
data streams [6], or to detect masqueraders [15].

EP is a class of frequent patterns (FPs) where the
itemsets are generated using association rule mining. An
itemset X is said to be frequent in dataset D if X’s support
in D, written as sup,(X)>minsupp, a user-given
minimum support threshold [16]. In other words, an EP
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contains related items because their appearance together in
D is frequent with respect to minsupp.

An EP is formally defined as follows [5]. Given an
ordered pair of datasets D; and D,, set I contains all items
in both datasets, and X C / is an itemset. Let sup;(X)
denote the support of X in D;. The support growth rate of
X from D to D, denoted as GR(X), is defined as

0  if sup,(X)=0and sup,(X)=0,

GR(X)={ oo ifsup;(X)=0andsup,(X)#0, (2)
% otherwise.

Given that p > 1 is a mingrowth, an itemset X is said to
be a p-emerging pattern (or simplify p-EP or EP) from D,
to D, if GR(X) > p. The EP mining problem is, for a given
p, to find all p-EPs. In a special case when sup,(X) =0
and GR(X) > p, X is called a jumping EP (JEP).

The EP mining concept was initially applied to two
static datasets of D; and D,. The data in both datasets
come from the same source, but are collected at two
different time stamps, for example, the transactional data
of a supermarket recorded in different months.
Alternatively, D; and D, can also come from different
sources, for example, transactional data from different
supermarkets. This notion was adapted to two classes of
dynamic datasets accordingly, such as in the data stream
environment, and relevant examples involve finding the
changes in the network by inspecting the IP traffic patterns
captured from network routers [6], and to approximate the
EP from two different classes of streaming data [7].

EPs can also be found in one class of streaming or
temporal dataset. In this case, the streaming is divided into
several time windows. Each window contains a number of
transactions. An EP is evaluated between windows W, and
W,, where W, is the most recent window. A method
named Dual Support Apriori for Temporal Data is
proposed to find the emerging trends from temporal
datasets using a sliding windows model [4]. The sliding
windows model is also used to find contrast patterns in
imbalanced classification [17], to find emerging melody
patterns [18], and to discover contrast patterns in changing
data [19]. However, the problem of long-term evaluation
of EPs at multiple time windows is not covered in this
sliding windows model because this model only concerns
two windows, the current and previous windows, while
the older windows are ignored.

2. Tilted-Time Windows Model

The TTWM was proposed to store and maintain an
itemset’s supports from a certain number of windows at
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Fig. 1. Element updating in tilted-time windows model.

multiple time windows in the long term. As explained in
[8]-[10], people actually need the most accurate supports
only from some recent windows, while coarser accuracy is
acceptable from older windows. Therefore, support data
in a large number of windows should be condensed
efficiently into a smaller number of array elements.

Technically, each itemset X stores its support data in an
n-element array, denoted as X.sup[i], or sup[i] to simplify.
Each sup[i] has a capacity, that is, the maximum number
of windows that can be merged inside a respective
element, while sup[0] stores support obtained from the
window that is currently being processed. TTWM models
the capacities of sup[i] into a particular number sequence,
that is, a capacity sequence. The smaller the capacity, the
finer the accuracy of support. The capacities of the first
few elements are set to 1 to ensure the finest support
accuracy. In most models, the capacities of elements of
sup[i] < the capacities of sup[j], i <.

Suppose the transactions are collected and then
processed in every 1/4 h, but the manager requires only
the most accurate supports in the last 1-h processes. Thus,
four elements, that is, sup[0,0,0,0], are initially created to
accommodate support from four windows of 1/4-h data
processing. Figure 1 demonstrates TTWM when the
elements are updated. After all 1/4-h elements are
occupied, or X.sup[1,1,1,1], as support found in current
window will be put in sup[0], supports in 1/4-h elements
first are merged and stored into the 1-h element. Next, all
1/4-h elements are nullified, and sup[0] is now ready
to store the current support, or the array becomes
sup[1,0,0,0,4] (Fig. 1). This approach facilitates 1-day
data processing only by 4 (1/4-h element) + 24 (1-h
elements) = 28 elements, instead of using 4 x 24 = 96
elements to store all 1/4-h processing results for 24 h. It is
an efficient solution [7]-[9].

3. Logarithmic Tilted-Time Windows Model

A model derived from TTWM, named logarithmic
TTWM (also called LWin), was first introduced in [10]
with the goal of storing and maintaining supports of
itemsets for the long term. The decision-maker benefited
from this approach since a time-related query about the
pattern’s popularity trend can be evaluated, such as
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patterns that are popular once, seasonally popular, or

forever popular. Such a benefit cannot be harvested from

the other data windows models [9], [10], such as sliding
windows [4], [17]-[21], damped windows [22], [23], or

landmark windows models [24], [25].

LWin is designed to deal with storing the results of FP
mining in an offline data stream. The streaming
transactions are divided into N windows containing a
uniform number of transactions. The logarithmic approach
is proposed to reduce the number of elements more
significantly, compared to the original TTWM. N
windows can be accommodated in only {1 + Zlog(N)}
elements. For instance, 1,024 windows are fit in only 11
elements, which is very memory efficient.

LWin uses a sequence G = {1}U{1[1], 2[2], 4[4], 8[8],
and so on} to organize the capacity of sup[i] elements,
i > 0. The sequence is a geometric sequence with ratio
r = 2. Except each element (called the main element), in
maintaining the entire structure there are intermediate
elements that normally are null, named sub[i], and have
the same capacity as the main element, that is, sup[i]
[71-[9]. Those articles also explain that the sequence’s
ratio is a positive integer and is changeable in accordance
with the analyst’s needs, although they only explain how
LWin works using » = 2. We can see three 1s in sequence
G, which respectively represent the most accurate support
stored in sup[0], sup[1], and sub[1].

Given a 2n-element array, these are sup[i] and sub][i],
i=0 to n — 1. The updating mechanism of the array
elements in LWin applies the following procedures:

1. sup[0] is always filled with the support in the current
window.

2. sup[1] is filled only by shifting sup[0] into it.

3. sub[{] is filled only by shifting sup[i] into it, while
sup[i], i>1, is filled by sup[i] =sup[i — 1]+
sub [i — 1], and sub[i — 1] is nullified afterward.

4. The first updating target is a sub[i] = 0, where i is the
lowest index, and the updating continues to its main
element sup[i], followed by updating all sup[;] and
sub[/], j < i, using procedure numbers (1), (2), and (3).

5. When all sup[i] and sub[i] are occupied, increment
n=mn+ 1, and create a new pair of elements sup[#]
and sub[#n] at the back of the array. sup[#n] becomes the
first updating target, followed by all sup[i] and subli],
i < n, using procedures (1), (2), and (3).

However, LWin must overcome two situations in its
element updating process. If N is exactly 2", then N
windows are fit to the (n + 1)-main-element array. For
example, when N =8 and thus » = 3, 8§ windows are
exactly accommodated in 4 elements, where the volume
sequence is like {1, 1[], 2[], 4[]}; [] represents an empty

https://doi.org/10.4218/etrij.18.0117.0175
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Fig. 2. Volume sequence and updating steps in LWin.

sub[i]. However, if N is not exactly 2", then N windows
will be accommodated by the (» + 1)-main-element array,
plus some intermediate element(s). For example, when
N = 9 and thus » ~ 3, 9 windows will be condensed into
a four-element array, plus an intermediate element where
the formed volume sequence is like {1, 1[1], 2, 4}.

An illustration of the volume sequence updating when
X is found in N = 1 to 8 windows is given in Fig. 2. The
dashed line, bold arrow, and thin arrow represent a pair of
sup[i] — sub[i], the first step, and the next steps,
respectively. From this illustration, it is known that the
number of elements, hence the memory needed by each
itemset, is actually a maximum of 2 x {1 + *log(N)}.

4. Fibonacci Windows Model

FWin or the Fibonacci windows model was introduced
to improve the memory efficiency issue that occurred
during LWin usage, and also to deal with online data
stream mining [14]. The main difference between FWin
and LWin is that instead of using a “doubled” geometric
sequence, FWin uses a Fibonacci sequence F = {1, 1, 2, 3,
5, and so on} to organize the elements’ capacity. Thus, no
intermediate element is needed in the updating process. In
addition, the distance between capacities in F[i] is smaller
than the distance in G[i], i > 2. According to the principle
of TTWM, FWin provides better accuracy than LWin.

Given an n-element array, sup[i], i =0 to n — 1, the
element updating procedure in FWin is described as
follows:

1. sup[0] is used to accommodate support in the current
window

2. sup[1] is updated by shifting sup[0] into it.

3. sup[i], i > 1, is updated by merging sup[i — 1] and
sup[i — 2] into it, or sup[i] = sup[i — 1] + sup[i — 2].
Then, sup[i — 1] is nullified afterward. By
decrementing i = i — 2, procedure (3) is repeated.

4. The first updating target is a sup[i] = 0, where i is the
lowest index, and the updating is continued to all
sup[/], j < i using procedure numbers (1), (2), and (3).

5. When there is no sup[i] = 0 left, increment n = n + 1,
so a new element is created at the back of the array,
sup[n]. Since sup[n] = 0, it becomes the first updating
target by using procedure (4).

An illustration of the volume sequence updating when X
is found in N = 1 to 7 windows is given in Fig. 3. The
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Fig. 3. Volume sequence and updating steps in FWin.

bold arrow and thin arrow represent the first and next
steps, respectively.

Using FWin, N windows can be accommodated in an n-
element array, N > n, such as (1). The value of supl[i].vol
is either 0 or F[i]. For example, a 15-element array
accommodates 1,596 windows. If one window is equal to
1 day of data processing, a 15-element array is efficiently
fit for 4.37 years of data processing.

However, both LWin and FWin still possess some
shortcomings, particularly with regard to data
incompleteness. Elements sup[1] or sub[1], which should
provide the most accurate support, may even be empty.
Consequently, queries about support values at several past
timestamps cannot be answered. The EPs in those
timestamps also cannot be evaluated; hence also a change
in the itemset’s popularity. The solution to these issues is
offered in this work via the proposal for a novel Push-
Front Tilted-Time Windows Model and its derivation
model, that is, the Push-Front Fibonacci Windows Model.
These are explained in the next section.

II1. Proposed Methodology

This section explains the details of PF-TTWM, followed
by the proposed PF-FWin and an automaton for PF-FWin
as an updating mechanism. The EP mining criteria, which
are used to find EPs using PF-FWin, are explained
afterward.

1. Push-Front Tilted-Time Windows Model

An illustration of the proposed PF-FWin model is
shown in Fig. 4. The main difference between PF-TTWM
and TTWM is that when all elements reach their
respective capacities, PF-TTWM inserts a new element at
the front of the array, so there is no null element created.
In a case given in Subsection II-2, the push-front
operation makes Xsup =[1,1,1,1] become X.sup =
[1,1,1,1,1], instead of X.sup[1,0,0,0,4], such as that
produced by TTWM. Support in sup[3] becomes sup[4]

New pushed-front Y4-hour element

B T oy

4% Ya-hour elem. 4% Ya-hour elem.

Becomes 1-hour element

Fig. 4. Proposed push-front tilted-time windows model.
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and represents a 1-h element, while a new sup[0] will be
filled with new data just arrived.

The main goals of tilting the time windows in PF-
TTWM are derived from TTWM (that is, to reduce the
memory used to store the supports) and to eliminate null
elements in PF-TTWM. In the new proposed model, many
front elements are filled with one window. Thus, PF-
TTWM can provide better data completeness and accuracy,
compared to traditional TTWM.

Programmatically, the push-front operation is
implementable directly in C++ language using the
pushfront() method. It is a member function of the deque
(double-ended queue) container. The amortized time
complexity of pushfront() is O(1), which is very efficient
because element insertion is done at the beginning of the
data structure.

2. Push-Front Fibonacci Windows Model

PF-TTWM can improve FWin’s performance to find
EPs. Using PF-FWin, N windows, in which X is found, can
always be accommodated into an n-element array (N < n)
by referring to (1), where X .sup[i].vol € {1,2, ..., F[i|}.

Given an n-element array sup[i], i =0 to n — 1, the
complete updating procedures are as follows:

1. Fori =n — 1 to 0, do /*Here, the last element, that is,
sup[n — 1] becomes the first updating target */

a) sup[i] + = sup[i — 1]

b) Shift sup[i — 1] « sup[i — 2], ...

sup(0]

c) Particularly, if i = 0, then sup[0] < support in the

current window.

2. If the volume of sup[r — 1] reaches its capacity, then
n =n — 1, and repeat procedure (1). This step means
that after sup[n — 1].vol reaches its capacity, then the
next updating target is sup[n — 2], and so on.

3. If all supl[i].vol reach their capacity, that is, the volume
sequence = the Fibonacci sequence, a new element is
pushed to the front of the array, sup[0], while the
current array’s indices are all incremented by 1
accordingly.

Figure 5 shows an illustration of the updating
mechanism and the change in the volume sequence of PF-
FWin. The bold arrow and thin arrow represent the first
and next steps, respectively, where the pf arrow represents

, < sup[l] <

N=1N=2 N=3 N=4

N=5
swlil[1] [The»(1] [1}e>{1]1] [1} E [1Fr>{1[1]2]

Merged

N=6 N=7
I-IR1E) (- 213)

Merged Merged

Fig. 5. Volume sequence and updating steps in PF-FWin.
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the push-front operation, and the merged-arrow shows the
merging process sup[i] + = sup[i — 1], respectively.

3. PF-FWin Updating Automaton

PF-FWin’s updating procedures above are modeled in
a deterministic finite automaton called the PFwin
Automaton (PFwinA). Formally, the automaton is defined
as PFwinA(S, 7, Sy, Z, /), and the tuples are explained as
follows:

1. State set S = {Uc: update current element, that is,
sup[m], m = n — 1; Up: update previous element, that
is, sup[m — 1]; Pf: push front the array}

. Input set / = {isFiboSeq, isNotFiboSeq, isFiboElement,
isNotFiboElement},

. A start state Sy = {Pf}

. Stop states set Z = {Uc, Up, Pf}

. Next-state function f> S x I — §, a function to direct
the current state to the next state, after reading the
input. The transition table of function f is given in
Table 1, while the transition graph is given in Fig. 6.
Additionally, Table 1 also lists the steps taken after a
current state reads an input.

PFwinA describes four conditions that may appear

during the updating process, and they are defined as

the input of the automaton. The first condition is called
isFiboSeq. It means the volume sequence generates

a Fibonacci sequence or Xsup[i].vol = ZF[i]. The

second condition is isNotFiboSeq, which is true if

sup[n — 1].vol = F[n — 1] but Zsup[i].vol # XF[i]. The
third condition is isFiboElement, which is reached
when sup[n — 1].vol = F[n — 1]. The last condition is
isNotFiboElement ~ to  explain  sup[n — 1].vol <

F[n — 1]. If a condition is met after the current state is

reached, the step given in the last column of Table 1 is

applied. The current element being updated is always
sup[m], where m =n — 1. When a previous element

ETRI Journal, Vol. 40, No. 1, February 2018
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Fig. 6. PFWin automaton graph transition.

isFiboElement

should be
m=m — 1,

decremented by one,
updated. The current

updated, m is
and sup[m] is
element is now reset to sup[m].

The iteration is started by pushing the first element to
the front of the array, and thus PFwinA is started from
the Pf state, where N = 1, or sup[n — 1].vol = 1. The
automaton can stop at any state, and then it is waiting for
the next new window addition.

To prove that PFwinA can generate a volume sequence
as defined in (1) using the push-front approach, the
following properties are developed and their proofs are
given:

Property 1: When a Fibonacci sequence has not been
developed yet, PFwinA repeatedly updates sup[m] until
sup[m].vol = Flm]. We have to prove that for
Vs € § — {Pf}, fs, isNotFiboElement) = t = ¢ = Uc. Pf
is excluded since it represents a state where isFiboSeq is
true.

Proof: By contradiction, assume ds € S — {Pf} where
s, isNotFiboElement) = ¢ A ¢t = Uc. By inserting all
s € § — {Pf} into the next-state function above, f{{Up,
Uc}, isNotFiboElement) = f{Up, isNotFiboElement) U
AUc, isNotFiboElement) = {Uc}. Since all function results
are ¢t = Uc, thus the assumption is not correct. Therefore,
Property 1 is correct. [ ]
Property 2: After sup[n — 1].vol = F[n — 1], PFwinA
continues to update sup[n — 2]. The proof is clearly given
in Table 1 that Vs € S, f(s, isFiboElement) = ¢t = ¢ = Up,
which means PFwinA is updating the previous element,

Table 1. State transition table for PFwin automaton.

No Current state Input Next state Step taken

1 Pf isFiboSeq Pf Push-front a new element sup[0]

2 Pf isNotFiboSeq Uc Update current element sup[m]

3 Uc isFiboSeq pPf Push-front a new element sup[0];

4 Uc isFiboElement Up Update previous element: m = m — 1; update sup[m]
5 Uc isNotFiboElement Uc Update current element sup[m]

6 Up isFiboSeq Pf Push-front a new element sup[0]

7 Up isFiboElement Up Update previous element: m = m — 1; update sup[m]
8 Up isNotFiboElement Uc Update current element sup[m]

https://doi.org/10.4218/etrij.18.0117.0175
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that is, by decrementing m = m — 1 and then updating
sup[m].

Property 3: The second push-front operation taken after
{sup[i].vol} = a Fibonacci sequence generating sup[#]
=Fnl,n>1,i=0ton — 1.

Proof: Suppose the volume sequence = a Fibonacci
sequence. Thus, {sup[i].vol} = {1, 1, 2, ..., F[n — 2],
Fln — 1]}. The first push-front makes volume sequence =
{1} U{1, 1, 2, ..., Fln — 2], F[n — 1]}. The summation
of Fln — 1]+ F[n — 2] creates the next Fibonacci
element F[n], and is stored in sup[z]. [ ]

4. Finding EPs Using PF-FWin

Finding EPs over the data stream using PF-FWin (and
other TTWM models) requires dealing with large supports
as the merging results of some supports. As a
consequence, GR(X) formulation and mingrowth become
two main keys that affect to the EP quantity that can be
found from the streaming.

This article evaluates an emergency of X by inspecting
X.sup[0], that is, the current support and another X.sup[/],
j > 0. Xis said to be a p-EP, p > 0, if the two following
criteria are met:

1. X is frequent in the current window, or X.sup[0] >
minsupp.

2. GR(X) from sup[j] to sup[0] > p, where GR(X) is
defined in this work as

(X .sup[0] — X .sup[/])
X supl /] '

GR(X) = 3)

Such a GR(X) formula is slightly different from one
defined in the original work (introduced in Section II)
because sup[j], j > 1, possibly contains a large support
value. Thus, X’s support growth is said to be significant if
it reaches a certain percentage, for example, 20%.

IV. Experimental Works, Results, and Discussions

Two experiments are conducted to evaluate PF-FWin
performance compared with LWin and FWin to find EPs
in online transaction data streaming. The EP quantity as
well as the support accuracy and data completeness are the
evaluated performance indicators. The online streaming
process means that itemsets are directly generated from
each transaction as it arrives. Each generated itemset will
also be directly evaluated as to whether it is an EP using
criteria explained in Subsection III-4. The runtime
performance is also evaluated.

Programs for the three models are developed using C++
and compiled in Visual Studio Express 2013. Those
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programs are individually run on three different PCs with
the same specifications, that is, an Intel Core i3 CPU @
3.30 Ghz, 2-GB RAM, under Windows 7 64-bit. A
container in C++’s Standard Template Library, that is
deque, is used to store the supports in all models. A
member function of deque, that is, pushfront(), is used to
run the push-front operation in PF-FWin’s element
updating process.

1. Experimental Design

In the first experiment, a synthetic transaction dataset
generated using the IBM Pro Quest Data Generator is
used. It contains 1 million transactions and 243 items,
where one transaction has 3-10 items. Each window
contains a fixed number (10K) of transactions. Thus, there
are a total of 100 windows. Minsupp is set to 100, while
mingrowth p = 20%. Higher mingrowth values, for
example, 50%, have also been experimented on, but since
the number of found EPs as not large, this will not be
discussed. The same dataset and thresholds are also used
in another case in which a new window is created in every
10 min of transaction processing.

The second experiment uses the Online Retail Dataset,
which is available in the UCI repository [26]. The dataset
contains 3,958 items and about 541,000 records of invoices
(transactions) in which each invoice lists a number of
singleton items. As some invoices have hundreds of items
while others only have a very few, in order to make the
number of items even, large invoices are divided into smaller
ones. Thus, each invoice contains 10 items maximally. This
approach was discussed in [24], [25], where the streaming
was divided into some item buckets (that is, windows) in
order to keep the program running under limited memory
resources. A new window is created after 2,500 invoices are
processed in a previous window. Minsup and mingrowth are
set to 50% and 20%, respectively.

In order to make the data easier to compare, only
itemsets with < 3 items are processed, considering that
longer itemsets usually have smaller support and short
itemsets have a higher probability to emerge [16]. In
addition, since we use an online data stream, memory
resources are crucial features to consider, especially in a
single-machine environment.

2. Results and Discussions
A. First Experiment Results

Discussion of the first experiment results starts with the
number of EPs found by the three models, as charted in

http://onlinelibrary.wiley.com/journal/10.4218/(ISSN)2233-7326
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Per 10,000 transactions, minsup 100, mingrowth 0.2

i-th 10,000 transactions

Fig. 7. Number of EPs found by LWin, FWin, and PF-FWin per
10K transactions.

Fig. 7. In total there are 4,708 EPs found by PF-FWin,
while FWin and LWin only found 1,255 and 2,469 EPs,
respectively. This means that the performance of PF-FWin
to find EPs is about 1.9 times and 3.75 times (or about
90% and 275%) higher than LWin and FWin,
respectively.

The runtime performance does not show significant
differences between the three methods, whereas PF-FWin
applies a quite different approach compared to the
traditional ones. PF-FWin finished processing all 1M
transactions by creating 100 windows in 11H(our):27(M)
inutes, while LWin and FWin, respectively, spent
11H:48M and 11H:28M. Two methods of FWin are faster
than LWin. In total, 814,895 different itemsets in 100
windows, or about 814.959 itemsets/window/10K
transactions, are generated.

Compared to the two other models, LWin took the
longest time to finish all processes because it uses a
“double” geometric sequence to organize the array’s
elements. Thus, the number of elements that must be
checked doubles as well. Our observation concluded that
the time-complexity worst case of LWin is when all or
almost all sup[i] and sub[i] are occupied, or N is almost
reaching 2n, such as when N = 15. The volume sequence
for N = 15 using LWin is {1, 1[1], 2[2], 4[4]}, and as
shown, all sup[i] and sub[i], i > 0, are filled. Thus, when
an EP evaluation is performed, the LWin algorithm must
double-check all elements.

As a comparison, the volume sequences of FWin and
PF-FWin when N = 15 are {1, 1,2, 3,0, 8} and {1, 1, 1,
1, 3, 8}, respectively, but the number of EPs found by
LWin, FWin, and PF-FWin when N = 15 is 15, 11, and
66 EPs, respectively. The number of elements in an array
of all models is actually quite similar. The reason PF-
FWin produces more EPs than the other methods is
because of the presence of many 1s in front of the array.
These instances show that the better support accuracy of
PF-FWin improved the number of EPs that can be found
by this model. The worst case of PF-FWIn occurred when
all supli].vol reached their capacity, or when the volume
sequence = a Fibonacci sequence because the array
contained only two 1s in its front elements.

https://doi.org/10.4218/etrij.18.0117.0175
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Figure 7 shows that LWin outperforms PF-FWin in two
windows, that is, N = 7 and 33. If elaborated, PF-FWin’s
and LWin’s volume sequences in N = 7 are {I, 1, 2, 3}
and {1, 1[1], 2, 4}, respectively; while for N = 33 they are
{1, 1,2, 3,5, 8 13} and {1, 1[1], 2, 4, 8, 16} for their
respective models. The number of EPs found by these
models when N =7 is 5 and 6 EPs, respectively, and
when N = 13, the results are 58 and 66 EPs, respectively.
All sup[i].vol in PF-FWin reached their capacity. Thus,
the array has only two 1s in its first elements. By contrast,
the array in LWin has three 1s and makes more itemsets
for the mingrowth. Nevertheless, these instances are
effective proofs that having more 1s in an array opens an
opportunity for the algorithm to find more EPs.

The best case for PF-FWin is reached after the volume
sequence = Fibonacci sequence and push-front operations
are performed thrice afterward. The reason for this
situation is because many 1s are generated in front of such
a sequence. After the volume sequence = Fibonacci
sequence, the first push-front operation creates a new
element in front of the array. The second push-front
merges sup[n — 2] into sup[z — 1], and thus
sup[n — 1] = F[n — 1]. The third push-front updates
sup[n — 2] + = sup[n — 3]. As a result, many 1s are then
pushed into the front of the sequence, and accordingly the
support accuracy is improved and also becomes the best in
this state. An example for this explanation occurs when
comparing volume sequences when N = 12 and N = 15.

By contrast, results from additional observations also
quite similar with previous results (Fig. 8). The number of
EPs found by PF-FWin, FWin, and LWin, respectively, is
3,523, 686, and 1,962 EPs. In this case, PF-FWin also
outperforms the other models up to 5.13 and 1.79 times,
respectively.

In the first experimental approach, as the number of
transactions in all windows is uniform, the number of
itemsets created and number of EPs found in each window
are also constant. However, these numbers are not the same
for each window in an additional experiment. This
phenomenon likely occurred because of two reasons. First,
although the timer was set to 10 min (or other durations),
the computer results for the time calculation have a

Per 10 minutes, minsup 100, mingrowth 0.2

S
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‘ ----- Lwin - Fwin— PF-Fwin ‘ i-th 10 minutes

Fig. 8. Number of EPs found by LWin, FWin, and PF-FWin per
10 min.
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difference of milliseconds. This difference affects the
number of itemsets generated in each window. Hence, there
is the opportunity for the itemset to be frequent and then
emerge in later windows. This also becomes the reason that
for certain windows, the number of EPs found by FWin and
LWin is larger than those found by PF-FWin.

Almost all windows created by both experiment
approaches. However, PF-FWin always outperforms the
other two models to find EPs. If we review the GR
formula, then an itemset X can become an EP only if
X.sup[j], hence X.sup[].vol, is not that large. Among the
three models, only PF-FWin can meet such a requirement
because in certain circumstances, many sup[i].vol contain
only one window. Therefore, even if p is made larger than
0.2, such as 0.5, PF-FWin still becomes the winner.

By contrast, FWin produces the lowest number of EPs
because several elements are empty in some situations. For
example, when N = 14, the volume sequences of PF-FWin,
FWin, and LWin, respectively, are {1, 1, 1, 1, 2, 8}, {1, 0,
2, 3,0, 8}, and {1, 1, 2[2], 4[4]}. While LWin even has
two 1s in front of the array, FWin contains only one 1; its
sup[1].vol is even empty, whereas it should provide the
most accurate support. Accordingly, very few itemsets have
the opportunity to be frequent and hence emerge in FWin.

B. Second Experiment Results

In addition to the quantity of EPs, the second
experiment also addresses EP accuracy produced by the
three methods.

Minsupp 50, mingrowth 0.2

i-th Window

‘ e—PF-FWin «eceee Fwin === Lwin ‘

Fig. 9. Number of EPs found by three methods in i-th window.

119

Figure 9 shows the number of EPs produced by the
compared methods, where the superiority of PF-FWin in
discovering more EPs is clearly shown. PF-FWin, FWin,
and LWin discover, respectively, 131, 64, and 60 EPs,
which means that PF-FWin found about two times more
EPs than the other models. The reasoning for this
achievement was discussed in the previous subsection.
Moreover, PF-FWin processes more invoices (in 14
windows) than the other methods, that is, FWin (12
windows) and LWin (9 windows). FWin and LWin failed
owing to a lack of memory during the array’s updating
process. This result shows a higher memory-efficiency
provided by PF-FWin compared to the others.

In the 8th window, for example, PF-FWin found 11
EPs, while FWin and LWin found only 1 and 7 EPs,
respectively. Three of 11 itemsets that emerge in the 8th
window are listed in Table 2. The supports’ arrays, which
store the respective itemset supports and the array’s
volume sequences, are also given. The sequence shows
the number of windows being merged into the elements.
Hence, it indicates the accuracy of supports stored in
respective elements.

PF-FWin found all three EPs, but only EP no. 2
{22084} can be found by FWin. By contrast, LWin found
itemset{85099C} as an EP, but it could not be found by
FWin. Itemset{85123A}, which is registered as a product
called White hanging heart t-light holder, is found to be
emerging by PF-FWin because its support growth >
20% from sup[2] (75) to sup[0] (95). Using FWin and
LWin, this itemset is not found to be emerging because
the support growth threshold is not satisfied by sup[0] and
the other elements. LWin found itemset{85099C} to be
emerging from sup[1] (34) to sup[0] (51) with a support
growth of 50%, but FWin could not find it as an EP
because of the same reason explained previously.

With regard to accuracy, PF-FWin is able to provide
supports with 100% accuracy in three elements, that is,
from sup[0] to sup[2], since only one window is contained
by such elements. LWin can still provide 100% accuracy
in the current window (sup[0]) and the previous window

Table 2. Some EPs found in 8th window.

[Support’s arrays] [Array’s volume sequence]
No EP
PF-FWin FWin Lwin
| 85123A [95,91,75,189,287] [95,0,166,0,476] [95,91,181,370]
[1,1,1,2,3] [1,0,2,0,5] [1,1[0],2[0],4[0]]
) 22084 [69,48,45,28,29] [69,0,93,0,57] [69,48,61,41]
[1,1,1,2,3] [1,0,2,0,5] [1,1[0],2[0],4[0]]
[51,34,37,77,73] [51,0,71,0,150] [51,34,82,105]
; 83099 [1L.1123] [1.02.0.5] [1,110]2[014[0]]
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(sup[1]); however, FWin can only provide the finest
accuracy in the current window. By contrast, PF-FWin
also can provide better data completeness than the other
methods because there no null element exists in its
support’s array. The other two methods contain null
element(s). In FWin, for example, if the support
information in a previous window is requested, then such
a request cannot be answered because sup[l] is empty,
whereas it should provide support with the finest accuracy.
Alternatively, support stored in sup[2] can be used as an
approximation for sup[1], although it is not 100% accurate
since the support in sup[2] is a merging of supports stored
in the two past windows.

In the real online business world, the marketing
manager often needs to make a critical decision instantly,
such as the itemset(s) that should be supplied into a
marketplace based on emerging demand. Experimental
works show that PF-FWin is the best solution for this
problem because it is more time and memory efficient in
maintaining found itemsets and their support in the long
term, compared to the other models.

V. Conclusion

The proposed PF-TTWM approach offers better data
completeness and accuracy compared to traditional
TTWM. In this implementation, PF-FWin also shows
superior time and memory efficiency to maintain the
found itemsets and their support for a long term. As
demonstrated in experiments, data completeness and
accuracy are two quality characteristics that must be
provided by tilted time-window model approaches, since
these characteristics improve the EP quantity that can be
found by the models.
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