DOI QR코드

DOI QR Code

Novel graphene-based optical MEMS accelerometer dependent on intensity modulation

  • Ahmadian, Mehdi (Department of Electrical Engineering, Shahid Beheshti University) ;
  • Jafari, Kian (Department of Electrical Engineering, Shahid Beheshti University) ;
  • Sharifi, Mohammad Javad (Department of Electrical Engineering, Shahid Beheshti University)
  • Received : 2017.12.12
  • Accepted : 2018.05.03
  • Published : 2018.12.06

Abstract

This paper proposes a novel graphene-based optical microelectromechanical systems MEMS accelerometer that is dependent on the intensity modulation and optical properties of graphene. The designed sensing system includes a multilayer graphene finger, a laser diode (LD) light source, a photodiode, and integrated optical waveguides. The proposed accelerometer provides several advantages, such as negligible cross-axis sensitivity, appropriate linearity behavior in the operation range, a relatively broad measurement range, and a significantly wider bandwidth when compared with other important contributions in the literature. Furthermore, the functional characteristics of the proposed device are designed analytically, and are then confirmed using numerical methods. Based on the simulation results, the functional characteristics are as follows: a mechanical sensitivity of 1,019 nm/g, an optical sensitivity of 145.7 %/g, a resonance frequency of 15,553 Hz, a bandwidth of 7 kHz, and a measurement range of ${\pm}10g$. Owing to the obtained functional characteristics, the proposed device is suitable for several applications in which high sensitivity and wide bandwidth are required simultaneously.

Keywords

References

  1. D. K. Shaeffer, MEMS inertial sensors: A tutorial overview, IEEE Commun. Mag. 51 (2013), no. 4, 100-109. https://doi.org/10.1109/MCOM.2013.6495768
  2. X. Zou, P. Thiruvenkatanathan, and A. A. Seshia, A seismicgrade resonant MEMS accelerometer, J. Microelectromechanical Syst. 23 (2014), no. 4, 768-770. https://doi.org/10.1109/JMEMS.2014.2319196
  3. M. Ghanbari and M. J. Yazdanpanah, Delay compensation of tilt sensors based on mems accelerometer using data fusion technique, IEEE Sens. J. 15 (2015), no. 3, 1959-1966. https://doi.org/10.1109/JSEN.2014.2366874
  4. S. A. Zotov et al., High quality factor resonant mems accelerometer with continuous thermal compensation, IEEE Sens. J. 15 (2015), no. 9, 5045-5052. https://doi.org/10.1109/JSEN.2015.2432021
  5. M. Tsai, Y. Liu, and W. Fang, A three-axis CMOS- MEMS accelerometer structure with vertically integrated fully differential sensing electrodes, J. Microelectromechanical Syst. 21 (2012), no. 6, 1329-1337. https://doi.org/10.1109/JMEMS.2012.2205904
  6. S. Tez et al., A bulk-micromachined three-axis capacitive MEMS accelerometer on a single die, J. Microelectromechanical Syst. 24 (2015), no. 5, 1264-1274. https://doi.org/10.1109/JMEMS.2015.2451079
  7. V. Petkov, G. Balachandran, and J. Beintner, A fully differential charge-balanced accelerometer for electronic stability control, IEEE J. Solid-State Circuits 49 (2014), no. 1, 262-270. https://doi.org/10.1109/JSSC.2013.2284348
  8. N. N. Hewa-Kasakarage et al., Micromachined piezoelectric accelerometers via epitaxial silicon cantilevers and bulk silicon proof masses, J. Microelectromechanical Syst. 22 (2013), no. 6, 1438-1446. https://doi.org/10.1109/JMEMS.2013.2262581
  9. A. Kazama, T. Aono, and R. Okada, Stress relaxation mechanism with a ring-shaped beam for a piezoresistive three-axis accelerometer, J. Microelectromechanical Syst. 22 (2013), no. 2, 386-394. https://doi.org/10.1109/JMEMS.2012.2227139
  10. K. Zandi, J. Belanger, and Y. Peter, Design and demonstration of an in-plane silicon-on-insulator optical MEMS Fabry Perot-based accelerometer integrated with channel waveguides, J. Microelectromechanical Syst. 21 (2012), no. 6, 1464-1470. https://doi.org/10.1109/JMEMS.2012.2211577
  11. O. Solgaard et al., Optical MEMS: From micromirrors to complex systems, J. Microelectromechanical Syst. 23 (2014), no. 3, 517-538. https://doi.org/10.1109/JMEMS.2014.2319266
  12. A. Sheikhaleh, K. Abedi, and K. Jafari, A proposal for an optical MEMS accelerometer relied on wavelength modulation with one dimensional photonic crystal, J. Lightwave Technol. 34 (2016), no. 22, 5244-5249. https://doi.org/10.1109/JLT.2016.2597539
  13. M. Kohler, T. Heaton, and M. Cheng, The community seismic network and quake-catcher network: Enabling structural health monitoring through instrumentation by community participants, Proc. SPIE 8692 (2013) 86923X:1-86923X:8.
  14. A. Sabato et al., A novel wireless accelerometer board for measuring low-frequency and low-amplitude structural vibration, IEEE Sens. J. 16 (2016), no. 9, 2942-2949. https://doi.org/10.1109/JSEN.2016.2522940
  15. T. Guan et al., MOEMS uniaxial accelerometer based on Epo-Clad/EpoCore photoresists with built-in fiber clamp, Sens. Actuators A: Phys. 193 (2013), 95-102. https://doi.org/10.1016/j.sna.2012.12.030
  16. A. K. Geim and K. S. Novoselov, The rise of graphene, Nature Mat. 6 (2007), 183-191. https://doi.org/10.1038/nmat1849
  17. A. C. Ferrari et al., Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, Nanoscale 7 (2015), no. 11, 4598-4810. https://doi.org/10.1039/C4NR01600A
  18. C. Lee et al., Measurement of the elastic properties and intrinsic strength of monolayer graphene, Sci. 321 (2008), 385-388. https://doi.org/10.1126/science.1157996
  19. J. Lee, D. Yoon, and H. Cheong, Estimation of Young's modulus of graphene by Raman spectroscopy, Nano Lett. 12 (2012), no. 9, 4444-4448. https://doi.org/10.1021/nl301073q
  20. X. Zang et al., Graphene and carbon nanotube (CNT) in MEMS/NEMS applications, Microelectronic Eng. 132 (2015), no. C, 192-206. https://doi.org/10.1016/j.mee.2014.10.023
  21. Z. H Khan et al., Mechanical and electromechanical properties of graphene and their potential application in MEMS, J. Phys. D: Appl. Phys. 50 (2017), no. 5, 053003:1-053003:24.
  22. F. Schwierz, Graphene transistors, Nature Nanotechnol. 5 (2010), no. 7, 487-496. https://doi.org/10.1038/nnano.2010.89
  23. A. Krajewska et al., Fabrication and applications of multi-layer graphene stack on transparent polymer, Appl. Phys. Lett. 110 (2017), no. 4, 041901:1-041901:5.
  24. A. D. Smith et al., Electromechanical piezoresistive sensing in suspended graphene membranes, Nano Lett. 13 (2013), no. 7, 3237-3242. https://doi.org/10.1021/nl401352k
  25. C. Martin-Olmos et al., Graphene MEMS: AFM probe performance improvement, ACS Nano 7 (2013), no. 5, 4164-4170. https://doi.org/10.1021/nn400557b
  26. W. Ren and H. Cheng, The global growth of graphene, Nature Nanotechnol. 9 (2014), no. 10, 726-730. https://doi.org/10.1038/nnano.2014.229
  27. A. Sheikhaleh et al., Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal, Appl. Opt. 55 (2016), no. 32, 8993-8999. https://doi.org/10.1364/AO.55.008993
  28. Z. Djuric, Mechanisms of noise sources in microelectromechanical systems, Microelectron. Reliability 40 (2000), no. 6, 919-932. https://doi.org/10.1016/S0026-2714(00)00004-4
  29. F. Mohd-Yasin, D. J. Nagel, and C. E. Korman, Noise in MEMS, Meas. Sci. Technol. 21 (2009), no. 1, 012001:1-012001:22.
  30. A. L. Hsu et al., Graphene-based thermopile for thermal imaging applications, Nano Lett. 15 (2015), no. 11, 7211-7216. https://doi.org/10.1021/acs.nanolett.5b01755
  31. Y. Zhang et al., Direct observation of a widely tunable bandgap in bilayer graphene, Nature 459 (2009), 820-823. https://doi.org/10.1038/nature08105
  32. C. Lui et al., Observation of an electrically tunable band gap in trilayer graphene, Nature Phys. 7 (2011), no. 12, 944-947. https://doi.org/10.1038/nphys2102
  33. I. A. Ovidko, Mechanical properties of graphene, Rev. Adv. Mater. Sci. 34 (2013), no. 1, 1-11.
  34. Z. Xu and C. Gao, Graphene fiber: A new trend in carbon fibers, Mater. Today 18 (2015), no. 9, 480-492. https://doi.org/10.1016/j.mattod.2015.06.009
  35. Z. Fang et al., Active tunable absorption enhancement with graphene nanodisk arrays, Nano Lett. 14 (2013), no. 1, 299-304. https://doi.org/10.1021/nl404042h
  36. S. Lee et al., Angle-and position-insensitive electrically tunable absorption in graphene by epsilon-near-zero effect, Opt. Express 23 (2015), no. 26, 33350-33358. https://doi.org/10.1364/OE.23.033350
  37. H. Min and A. H. MacDonald, Origin of universal optical conductivity and optical stacking sequence identification in multilayer graphene, Phys. Rev. Lett. 103 (2009), no. 6, 067402:1-067402:6.
  38. S. Zhu, S. Yuan, and G. Janssen, Optical transmittance of multilayer graphene, EPL (Europhysics Lett.) 108 (2014), no. 1, 17007:1-17007:4.
  39. O. Legendre et al., A low-cost built-in self-test method for thermally actuated resistive MEMS sensors, Sens. Actuators A: Phys. 194 (2013), 8-15. https://doi.org/10.1016/j.sna.2013.01.013
  40. K. Jafari, A parameter estimation approach based on binary measurements using maximum likelihood analysis-Application to MEMS, Int. J. Control Autom. Syst. 15 (2017), no. 2, 716-721. https://doi.org/10.1007/s12555-015-0343-1

Cited by

  1. Fab-compatible nano-lens array integration for optically efficient flexible top-emitting organic light-emitting diodes vol.58, pp.4, 2018, https://doi.org/10.7567/1347-4065/ab0494
  2. Optical MEMS accelerometer sensor relying on a micro‐ring resonator and an elliptical disk vol.13, pp.7, 2019, https://doi.org/10.1049/iet-cds.2019.0029
  3. Towards Repeatable, Scalable Graphene Integrated Micro-Nano Electromechanical Systems (MEMS/NEMS) vol.13, pp.1, 2018, https://doi.org/10.3390/mi13010027