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3D reconstruction of urban architecture, land, and roads is an important part of

building a “digital city.” Unmanned aerial vehicles (UAVs) are gradually replac-

ing other platforms, such as satellites and aircraft, in geographical image collec-

tion; the reason for this is not only lower cost and higher efficiency, but also

higher data accuracy and a larger amount of obtained information. Recent 3D

reconstruction algorithms have a high degree of automation, but their computation

time is long and the reconstruction models may have many voids. This paper

decomposes the object into multiple regional parallel reconstructions using the

clustering principle, to reduce the computation time and improve the model qual-

ity. It is proposed to detect the planar area under low resolution, and then reduce

the number of point clouds in the complex area.
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1 | INTRODUCTION

The demand for 3D data in geographic information, urban
construction, national defense, and other fields is growing
[1–3]. Traditional methods cost a lot of manpower, mate-
rial, and financial resources, and usually incur a large error
[4–7]. Satellites are too high from the ground, and the
image quality cannot be compared with that of a close
range photograph [8,9]. Large aircraft using the high‐reso-
lution camera method can produce good quality images,
but the costs, landing space, and air route applications
make 3D reconstruction very complex [10–14].

The characteristics of small size, low energy consump-
tion, and high mobility make UAV widely used in various
fields [15–17]. Compared with the traditional photogram-
metry and remote sensing platform, low‐altitude flight
UAV and low‐cost camera combination meet the 3D image
accuracy requirements of digital city construction [18].

Using UAV flight formations, many UAVs can be used in
a region for data collection. UAV flight platforms have
greatly enhanced the efficiency of data collection [19–21].
Therefore, the UAV is the best platform for 3D reconstruc-
tion of large scenes at this stage.

At present, 3D reconstruction results based on multi‐
view images are prone to large voids [22]. Corner and
angular object are rebuilt into an arc. Trunk and other
smaller cylindrical objects are rebuilt with the phenomenon
of displacement, and so on [23,24]. These defects occur
primarily because point clouds generated by the 3D recon-
struction are not dense and accurate enough, and the details
of the scene cannot be highlighted in the point cloud [25].

This paper focuses on UAV 3D reconstruction by the
dense reconstruction algorithm. By increasing the number
of point clouds and improving the accuracy of point cloud,
the voids and reconstruction errors can be reduced, and the
reconstruction time can be shortened.
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2 | IMPROVEMENT OF 3D
RECONSTRUCTION ALGORITHM
BASED ON PMVS

The Patch‐based Multi‐view Stereo (PMVS) algorithm is an
algorithm for spreading feature area, as shown in Figure 1.
Initial information, such as convex hull, encircling box, and
the basic assumptions of the parallel views are not necessary.
It only needs to estimate the depth of the reconstructed point
cloud and the normal vector that is constrained by the illumi-
nation consistency.

The input image is divided into same μ × μ (μ = 32) pixel
image blocks. Harris features and DoG features are extracted
from the image block, the eigenvalues are sorted, and the
pre‐β(β = 4) bits with large eigenvalues are selected. After
the feature is extracted, the corner points and feature points
are obtained. The strongest feature response of each image
block is η. When η is smaller, the feature points are denser,
and the computational complexity is larger. After the feature
points are extracted, the images are matched with each other,
and the initial sparse patches are constructed and stored in the
grid C(i, j).

Each image block takes turns as a reference image R(P).
Calculating the angle between the optical axis of R(P) and the
optical axis of the other images; when the angle is less than
60°, the image is selected as I(P). Thereby, we select the ref-
erence image and the image to be matched. According to the
limit constraint condition (the matching point satisfies the dis-
tance of the pole line within two pixels), the matching point
of each image and the matching image is selected. Then, for
each pair of matching points (f, f′), the 3D point coordinates
were obtained by the coordinate mapping relationship.

1
zc
�

u

v

1

2
64

3
75 ¼

f
sx

r u0

0 f
sy

v0

0 0 1

2
664

3
775 � R3�3 T3�3

0 1

� �
�

XW

YW
ZW
1

2
6664

3
7775

¼ K3�3 �
R3�3 T3�3

0 1

� �
�

XW

YW
ZW
1

2
6664

3
7775;

(1)

s �
u
v
1

2
4

3
5 ¼ M3�4 �

XW

YW
ZW
1

2
664

3
775: (2)

K3×3 represents the camera internal parameter matrix
(including five internal parameters). M3×4 represents the
perspective projection matrix. S = 1/zc is an unknown scale
factor. Matrix P is known in this paper.

Setting the patch as P, the 3D space point c(P) is initial-
ized with the patch initial center (f, f′). The patch normal
vector n(P) points to the camera optical center of the refer-
ence image R(P). By using c(P) and n(P) as variables, the
photometric difference value g(P) of the patch is minimized
by the conjugate gradient method. The minimum patch is
selected as the final patch for this feature point. The photo-
metric consistency function h(P, I, R(P)) is calculated, and
then V(P) and g(P) are updated by the constraint V*(P) =
{I|I ∈ V(P), h(P, I, R(P)) ≤ α}. If there are at least γ pic-
tures of little difference in brightness of the picture, the
patch is successful. Save patch P in image blocks V(P) and
V*(P), and then update sets Qi(x, y) and Qi

�ðx; yÞ. Finally,
the optimal patch is selected as the final patch with a fea-
ture point, and the point is selected as the seed dots. Dur-
ing implementation, the reconstructed patch P is used
instead of the original patch in the image block, to reduce
the computational complexity and improve program effi-
ciency.

The kernel of patch spread is used to spread the existing
patches to neighborhood image block Ciðx; yÞ. Finally, each
patch is reconstructed in each image block. The cells are
composed of adjacent visible images of patch P. The
expression of the image cell is as follows:

CðPÞ ¼ fCiðx0; y0Þjp∈Qiðx; yÞ; jx� x0j þ jy� y0j ¼ 1g:
(3)

After the seed patch is initialized, the PMVS algorithm
spreads the seed patch outwards until a patch is created in
all image blocks. To increase the number of patches, the
spread adds seed patches to the neighborhood image block;
each added patch needs to find its cells. Repeat the previous
steps, until all the visible surface in the scene are covered.

When patch P0 is spread from seed patch P, the value of
patch P is used to initialize nðP0Þ, RðP0Þ, and VðP0Þ. CðP0Þ is
initialized with the intersection of the light path in the neigh-
borhood grid center and the plane where the seed patch is
located. Then CðP0Þ and nðP0Þ are optimized by the conjugate
gradient method. In the optimization process, it is necessary
to constrain CðP0Þ on the same straight line, so the projection
of CðP0Þin the image is fixed, and correspondence between
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image block Ciðx; yÞand patch P0 is determined. Finally, we
need to save the visible image VðP0Þ and update image set
V�ðPÞ. After patch spread is completed, the dense point cloud
contains incorrect points. Therefore, there are three patch fil-
tering constraints as follows:

1. Visible consistency constraints. The spread patches may
fall outside the scene.

jV�ðPÞjð1� g�ðPÞÞ<∑P1 ∈UðPÞð1� g�ðPiÞÞ: (4)

Equation (4) can determine whether the patch is outside
or not, where UðPÞ is a set of patches Pi that are not
adjacent to the current patch P, but in the same image
cell.

2. Number of visible images. For each patch P, accord-
ing to depth mapping test, P is visible in VðPÞ, and
the number of images in VðPÞ is calculated. If the
number of images is less than the threshold, P is fil-
tered out.

3. Neighborhood constraint. For each patch P, all patches
are selected for its cells and the adjacent cells from VðPÞ.
If adjacent patches account for less than 0.25 (the thresh-
old is 0.25) of the selected patches, P is filtered out.

3 | IMPROVEMENT OF CLUSTER‐
BASED PMVS ALGORITHM

Cluster obtains high‐resolution images by classifying input
images and removing redundant images. The images are
clustered into multiple clusters. The large scene 3D recon-
struction is decomposed into multiple small area 3D recon-
structions, so the 3D reconstruction efficiency is improved
by parallel computing.

3.1 | Clustering constraints

1. Density: The definition of density was used to complete
the 3D reconstruction with a minimum number of
images, and to eliminate redundant images.
Function f ðP;CÞ represents point Pj in cluster C. SFM
points can be reconstructed in at least one cluster, if it
satisfied the formula

maxðf ðPj;Ck∩VjÞÞ≥ λf ðPj;VjÞ: (5)

Vj is the visible image set of Pj, and λ is the visible
image threshold of the current SFM point.

2. Size: To ensure that each cluster can be fully recon-
structed, the number of images in a cluster must be
enough to reconstruct SFM point, and the number of
images cannot exceed the preset threshold.

3. Coverage: To rebuild each cluster, the details of the image
must maintain integrity. For any cluster Ik, formula
IiðCÞ=IiðFÞ≤ τ must be satisfied, where τ is an input
threshold.

3.2 | Clustering algorithm

After sparse reconstruction, the sparse point cloud (SFM point
set) is huge. Merging adjacent SFM points into one point can
effectively reduce the amount of data and increase the speed
of operation. According to the second clustering constraint,
each SFM point needs to be included by at least one cluster.
Therefore, redundancy images can be merged and removed.

When the size of a cluster is large, the cluster will be
divided into smaller clusters until the size satisfies the clus-
tering size constraint. The standard segmentation method
[26] was used in the clustering algorithm. Set an image as
a node, the image nodes with the same region are clustered
into a class. The edge weights elm of image ðIl; ImÞ repre-
sent the contribution to SFM points reconstruction.

elm ¼ ∑Pj ∈ θlm
f ðPj; fIl; ImgÞ

f ðPj;VjÞ ; (6)

where θlm is a set of SFM points that are visible for image
Il and Im. With (6), it is concluded that the greater contri-
bution of an image to the SFM point reconstruction, the
less the possibility for the image to be segmented. Accord-
ing to the clustering size constraints, the corresponding
image set is designated as a cluster, until all the clusters
are within the constraints.
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FIGURE 2 Cluster flowchart
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In the cluster classification step, the coverage constraint
is not considered. Therefore, after the first three steps, there
are some SFM points that are not covered by any cluster.
Add a new image to a cluster that does not satisfy the cov-
erage constraint to ensure that the cluster covers more SFM
points. The steps are shown in Figure 2:

1. For the SFM points Pj, which are not covered by
any clusters, Ck ¼ argmax f ðPj;CiÞ is used to

determine a cluster with maximum reconstruction
contribution.

2. Establish fðI ! CkÞ; gg with Pj, which means adding
the image Ið∈Vj; ∈CkÞ to Ck, where g is the measure-
ment of the validity. g is defined as
f ðPj;Ck∪fIgÞ � f ðPj;CkÞ, which is the difference in f
before and after the image I is added.

3. Create a list of adding image operation in descending
order by g.

FIGURE 3 Input images

FIGURE 4 Reconstruction model of each region

FIGURE 5 Reconstruction model

TABLE 1 Reconstruction time comparison

Scene
Original algorithm
reconstruction time/s

Improved average reconstruction time/s

Compared with the original algorithm, the time ratio
is saved under the dual thread

Single
thread

Dual
thread

Three
threads

Four
threads

Quarry 669.7 639.2 581.6 510.3 472.8 13.2%
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After the list is created, image I is added to Ck. To
reduce computation load, an image can be added only if its
g value is more than 0.7 times the maximum in the list.
The value of g in the list changes after adding an image,
so the list should be updated.

After adding a new image to a cluster, the size con-
straint may no longer be satisfied. Therefore, classifying
and updating of the cluster need to be performed cyclically
until all the clusters satisfy these constraints.

4 | EXPERIMENTS

The experiment used a four‐rotor UAV and camera
designed by us. The resolution of the camera is 20M pix-
els, and the shooting area is a quarry. The experiment used
128 images as shown in Figure 3.

After clustering, the 3D reconstruction of the PMVS
algorithm is carried out. The reconstruction model of each
region is shown in Figure 4.

The combination of the 3D model of each region is a
complete model. The 3D model before and after our
improved algorithm processing is shown in Figure 5.

The original algorithm to obtain dense point cloud has
large voids. After our improved algorithm processing, the
cloud density of the model is improved greatly. The original
method produced the large voids in the reconstruction model
(dense point cloud) but there are many points in the void area
in the sparse point cloud. The clusters are very large in the
original method, so it is difficult to match. The proposed
method has smaller cluster and it is easier to match, so the
void number and area can be reduced in the dense point cloud.
Scene boundaries and details generated from the point cloud
are more extensive.

The 3D reconstruction time is shortened by using the
improved algorithm. The algorithm decomposes the object
into multiple regions using multi‐thread simultaneous
reconstruction, which saves the reconstruction time, as illu-
strated in Table 1.

5 | CONCLUSIONS

The algorithm has improved the density and accuracy of the
point cloud compared with the original algorithm. There is a
significant reduction in the number of 3D model voids. Parallel
computation is used, and the reconstruction time is relatively
reduced. Experiments show that the algorithm proposed in this
paper has better results for large scene 3D reconstruction.
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