References
- Y. Alginahi, A survey on Arabic character segmentation, Int. J. Doc. Anal. Recogn. 16 (2013), no. 2, 105-126. https://doi.org/10.1007/s10032-012-0188-6
- U. Porwal, Z. Shi, and S. Setlur, Machine learning in handwritten Arabic text recognition, Handbook Statistics 31 (2013), 443-470.
- M. Parvez and S. Mahmoud, Arabic handwriting recognition using structural and syntactic pattern attributes, Pattern Recogn. 46 (2012), no. 1, 141-154. https://doi.org/10.1016/j.patcog.2012.07.012
- A. Lawgali, A survey on Arabic character recognition, Int. J. Signal Proces. Image Process. Pattern Recogn. 8 (2015), no. 2, 401-426. https://doi.org/10.14257/ijsip.2015.8.2.37
- T. Sari, l. Souici, and M. Sellami, Off-line handwritten Arabic character segmentation algorithm: ACSA, Proc. Int. Workshop. Frontiers Handwriting Recogn. (IWFHR), Ontario, Canada, August 6-8, 2002, pp. 452-457.
- S. Elaiwat, M. Abu-zanona, and F. AL-Zawaideh, A three stages segmentation model for a higher accurate off-line Arabic handwriting recognition, World Comput. Sci. Inform. Technol. J. 2 (2012), no. 3, 98-104.
- H. Eraqi and S. Abdelazeem, A new efficient graphemes segmentation technique for offline Arabic handwriting, Proc. Int. Conf. Frontiers Handwriting Recogn. (ICFHR), Bari, Italy, September 18-20, 2012, pp. 95-100.
- A. Lawgali et al., Automatic segmentation for Arabic characters in handwriting documents, Proc. Int. Conf. Image Process., Brussels, Belgium, September 11-14, 2011, pp. 3560-3563.
- Z. Tamen, H. Drias, and D. Boughaci, An efficient multiple classifier system for Arabic handwritten words recognition, Pattern Recogn. Lett. 39 (2017), 123-132.
- A. AbdelRaouf et al., Arabic character recognition using a Haar cascade classifier approach (Hcc), Pattern Anal. Appl. 19 (2016), no. 2, 411-426. https://doi.org/10.1007/s10044-015-0466-2
- M. Elleuch and M. Kherallah, An improved Arabic handwritten recognition system using deep support vector machines, Int. J. Multimed. Data Eng. Manag. 7 (2016), no. 2, 1-20. https://doi.org/10.4018/IJMDEM.2016040101
- L. Chergui and M. Kef, SIFT descriptors for Arabic handwriting recognition, Int. J. Comput. Vis. Robot. 5 (2015), no. 4, 441-461. https://doi.org/10.1504/IJCVR.2015.072193
- I. Ahmad and G. Fink, Multi-stage hmm based Arabic text recognition with rescoring, Proc. Int. Conf. Doc. Anal. Recogn. (ICDAR), Nancy, France, August 23-26, 2015, pp. 751-755.
- M. Kadhm and A. Abdul Hassan, Handwriting word recognition based on SVM classifier, Int. J. Adv. Comput. Sci. Appl. 6 (2015), no. 11, 64-68.
- U. Porwal, Y. Zhou, and V. Govindaraju, Handwritten Arabic text recognition using deep belief networks, Proc. Int. Conf. Pattern Recogn. (ICPR), Tsukuba, Japan, November 11-15, 2012, pp. 302-305.
- K. Jayech, M. Mahjoub, and N. Ben Amara, Arabic handwriting recognition based on synchronous multi-stream hmm without explicit segmentation, Proc. Int. Conf. Hybrid Artif. Intell. Syst., Bilbao, Spain, June 22-24, 2015, pp. 136-145.
- N. Habash, Introduction to Arabic natural language processing, Morgan & Claypool, New York, NY, 2010.
- L. Lam, S. Lee, and C. Suen, Thinning methodologies-a comprehensive survey, IEEE Trans. Pattern Anal. Mach. Intell. 14 (1992), no. 9, 869-885. https://doi.org/10.1109/34.161346
- A. Zeki, The segmentation problem in Arabic character recognition the state of the art, Proc. Int. Conf. Infom. Commun. Technol. (ICICT), Karachi, Pakistan, August 27-28, 2005, pp. 11-26.
- A. AL-Shatnawi and K. Omar, Methods of Arabic language baseline detection - the state of art, Int. J. Comput. Sci. Netw. Secur. 8 (2008), no. 10, 137-143.
- T. Abu-Ain et al., Text normalization framework for handwritten cursive languages by detection and straightness the writing baseline, Procedia Technol. 11 (2013), 666-671. https://doi.org/10.1016/j.protcy.2013.12.243
- S. Touj, N. Amara, and H. Amiri, Arabic handwritten words recognition based on a planar hidden Markov model, Int. Arab J. Inform. Technol. 2 (2005), no. 4, 318-325.
- P. Gader, A. Gillies, and D. Hepp, Handwritten character recognition, in Digital image processing methods (Ed. E. Dougherty), Marcel Dekker, New York, NY, 1994, pp. 246-247.
- T. Sari and M. Sellami, Overview of some algorithms of off-line Arabic handwriting segmentation, Int. Arab J. Inform. Technol. 4 (2007), no. 4, 289-300.
- Y. Elarian et al., Arabic ligatures: analysis and application in text recognition, Proc. Int. Conf. Doc. Anal. Recogn., Tunis, Tunisia, August 23-26, 2015, pp. 896-900.
- N. Dalal and B. Triggs, Histograms of oriented gradients for human detection, Conf. Comput. Vis. Pattern Recogn. (CVPR), San Diego, CA, June 20-25, 2005, pp. 1-8.
- H. Bay, T. Tuytelaars, and L. Gool, Speeded up robust features (SURF), Proc. Eur. Conf. Comput. Vis., Graz, Austria, May 7-13, 2006, pp. 404-417.
- G. Hinton, S. Osindero, and Y. Teh, A Fast learning algorithm for deep belief nets, Neural Comput. 18 (2006), no. 7, 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- M. Carreira-Perpinan, G. Hinton, On contrastive divergence learning, Proc. Int. Workshop. Artif. Intell. Statistics, Barbados, January 6-8, 2005, pp. 33-44.
- M. Keyvanrad and M. Homayounpour, A brief survey on deep belief networks and introducing a new object oriented toolbox (DeeBNet V3. 0), arXiv: 1408.3264, 2014.
- C. Cortes and V. Vapnik, Support-vector networks, Mach. Learn 3 (1995), no. 3, 273-297.
- M. Pechwitz et al., IFN/ENIT-database of handwritten Arabic words, Colloq. Int. Francophone Sur L'ecrit Et Le Doc. (CIFED), Tunisia, October 2002, pp. 127-136.
- G. Abanda and F. Jamour, A word matching algorithm in handwritten Arabic recognition using multiple-sequence weighted edit distances, Int. J. Comput. Sci. Issues 11 (2014), no. 3, 18-26.
- J. Davis and M. Goadrich, The relationship between precision-recall and roc curves, Int. Conf. Mach. Learn., Pittsburgh, PA, June 25-29, 2006, 233-240.
- A. Lawgali, M. Angelova, and A. Bouridane, HACDB: handwritten Arabic characters database for automatic character recognition, Eur. Workshop. Vis. Inform. Process., Paris, France, June 10-12, 2013, pp. 255-259.