DOI QR코드

DOI QR Code

극한 환경용 반도체 기술 동향

Technical Trends of Semiconductors for Harsh Environments

  • 발행 : 2018.12.01

초록

In this paper, we review the technical trends of diamond and gallium oxide ($Ga_2O_3$) semiconductor technologies among ultra-wide bandgap semiconductor technologies for harsh environments. Diamond exhibits some of the most extreme physical properties such as a wide bandgap, high breakdown field, high electron mobility, and high thermal conductivity, yet its practical use in harsh environments has been limited owing to its scarcity, expense, and small-sized substrate. In addition, the difficulty of n-type doping through ion implantation into diamond is an obstacle to the normally-off operation of transistors. $Ga_2O_3$ also has material properties such as a wide bandgap, high breakdown field, and high working temperature superior to that of silicon, gallium arsenide, gallium nitride, silicon carbide, and so on. In addition, $Ga_2O_3$ bulk crystal growth has developed dramatically. Although the bulk growth is still relatively immature, a 2-inch substrate can already be purchased, whereas 4- and 6-inch substrates are currently under development. Owing to the rapid development of $Ga_2O_3$ bulk and epitaxy growth, device results have quickly followed. We look briefly into diamond and $Ga_2O_3$ semiconductor devices and epitaxy results that can be applied to harsh environments.

키워드

HJTOCM_2018_v33n6_12_f0001.png 이미지

(그림 1) 기존 반도체 대비 극한 환경용 반도체 물성 및 응용 시스템에 미치는 대한 영향

HJTOCM_2018_v33n6_12_f0002.png 이미지

(그림 2) 다이아몬드 SBD의 다양한 구조들

HJTOCM_2018_v33n6_12_f0003.png 이미지

(그림 3) 다이아몬드 트랜지스터의 다양한 구조들

HJTOCM_2018_v33n6_12_f0004.png 이미지

(그림 4) 다이아몬드 반도체 FET 구조 및 사진

HJTOCM_2018_v33n6_12_f0005.png 이미지

(그림 5) 다이아몬드 반도체 FET의 DC/RF 특성: (a) 다이아몬드 반도체 DC 특성, (b) 다이아몬드 반도체 RF 특성

HJTOCM_2018_v33n6_12_f0006.png 이미지

(그림 6) 다이아몬드 반도체 FET의 적외선 열화상 비교 사진

HJTOCM_2018_v33n6_12_f0007.png 이미지

(그림 7) 다이아몬드 반도체 FET의 Class A 동작시 1GHz에서 RF 특성

HJTOCM_2018_v33n6_12_f0008.png 이미지

(그림 8) 증가형 산화칼륨 MOSFET 구조도 및 제작 사진: (a) 소자 구조도, (b)finger-type FET 소자, (c)circular-type FET 소자, (d)공정 완료된 β-Ga2O3 조각 웨이퍼)

HJTOCM_2018_v33n6_12_f0009.png 이미지

(그림 9) 증가형 산화갈륨 MOSFET 특성: (a)I-V 특성, (b)항복전압 특성)

참고문헌

  1. P.N. Volpe et al., "Extreme Dielectric Strength in Boron Doped Homo-Epitaxial Diamond," Appl. Phys. Lett., vol. 97, 2010, Article no. 223501.
  2. A. Traore et al., "Zr/oxidized Diamond Interface for High Power Schottky Diodes," Appl. Phys. Lett., vol. 104, 2014, Article no. 052105.
  3. H. Umezawa et al., "High Temperature Application of Diamond Power Device," Diamond Related Mater., vol. 24, 2012, pp. 201-205. https://doi.org/10.1016/j.diamond.2012.01.011
  4. R. Kumaresan et al., "Vertical Structure Schottky Barrier Diode Fabrication Using Insulating Diamond Substrate," Diamond Related Mater., vol. 19, no. 10, 2010, pp. 1324-1329. https://doi.org/10.1016/j.diamond.2010.06.019
  5. V.S. Bormashov et al., "Thin Large Area Vertical Schottky Barrier Diamond Diodes with Low On-resistance Made by Ion-Beam Assisted Lift-off Technique," Diamond Related Mater., vol. 75, 2017, pp. 78-84. https://doi.org/10.1016/j.diamond.2017.02.006
  6. T. Makino et al., "Diamond Schottky-pn Diode without Trade-off Relationship Between On-resistance and Blocking Voltage," Phys. Status Solidi A, vol. 207, no. 9, 2010, pp. 2105-2109. https://doi.org/10.1002/pssa.201000149
  7. M. Brezeanu et al., "On-State Behavior of Diamond M-I-P Structure," IEEE Semiconductor Conf., Sinaia, Romania, Sept. 27-29, 2006, pp. 311-314.
  8. S.J. Rashid et al., "Numerical Parameterization of Chemical-Vapor-Deposited (CVD) Single-Crystal Diamond for Device Simulation and Analysis," IEEE Trans. Electron Dev., vol. 55, no. 10, 2008, pp. 2744-2756. https://doi.org/10.1109/TED.2008.2003225
  9. 鈴木真理子, "高耐圧ダイヤモンドpinダイオード: 卓越した材料ポテンシャルからデバイス実現に向けて," 応用物, vol. 85, no. 3, 2016, pp. 218-222.
  10. H. Umezawa et al., "Characterization of X-Ray Radiation Hardness of Diamond Schottky Barrier Diode and Metal-semiconductor Field-Effect-Transistor," Int. Sypm. Power. Semiconductor. Dev. IC's, Sapporo, Japan, 2017, pp. 379-382.
  11. H. Umezawa et al., "Diamond Metal-Semiconductor Field-Effect Transistor with Breakdown Voltage Over 1.5 kV," IEEE Electron Dev. Lett., vol. 35, no. 11, 2014, pp.1112-1114. https://doi.org/10.1109/LED.2014.2356191
  12. T. Iwasaki et al., "High-Temperature Operation of Diamond Junction Field-Effect Transistors with Lateral p-n Junctions," IEEE Electron Dev. Lett., vol. 34, no. 9, 2013,pp. 1175-1177. https://doi.org/10.1109/LED.2013.2271377
  13. Y. Kitabayashi et al., "Normally-Off C-H Diamond MOSFETs with Partial C-O Channel Achieving 2-kV Breakdown Voltage," IEEE Electron Dev. Lett., vol. 38, no. 3, Mar. 2017, pp. 363-366. https://doi.org/10.1109/LED.2017.2661340
  14. H. Kawarada et al., "Durability-Enhanced Two-Dimensional Hole Gas of C-H Diamond Surface for Complementary Power Inverter Applications," Sci. Rep., vol. 7, 2017, Article no. 42368.
  15. K. Hirama et al., "Diamond Field-Effect Transistors with 1.3 A/mm Drain Current Density by $Al_2O_3$ Passivation Layer," Jpn. J. Appl. Phys., vol. 51, no. 9, 2012, pp. 090112:1-090112:5.
  16. M. Kasu, "Diamond Field-Effect Transistors as Microwave Power Amplifiers," NTT Techn. Rev., vol. 8, no. 8, Aug. 2010, pp. 1-5.
  17. T.J. Anderson et al., "Advanced in Diamond Integration for Thermal Management in GaN Power HEMTs," ECS Trans., vol. 64, no. 7, 2014, pp. 185-190. https://doi.org/10.1149/06407.0185ecst
  18. T.J. Anderson et al., "Profiling the Temperature Distribution in AlGaN/GaN HEMTs with Nanocrystalline Diamond Heat Spreading Layers," CS MANTECH Conf., Boston, MA, USA, Apr. 23-26, 2012, pp. 1-3..
  19. X.-F. Zheng et al., "Influence of the Diamond Layer on the Electrical Characteristics of AlGaN/GaN High-Electron-Mobility Transistors," China Phys. Lett., vol. 34, no. 2, 2017, pp. 027301:1-027301:4.
  20. A. Kuramata et al., "High-Quality ${\beta}$-$Ga_2O_3$ Single Crystals Grown by Edge-Defined Film-Fed Growth," Jpn. J. Appl. Phys., vol. 55, no. 12, 2016, pp. 1202A2:1-1202A2:6.
  21. Z. Galazka et al., "On the Bulk ${\beta}$-$Ga_2O_3$ Single Crystals Grown by the Czochralski Method," J. Cryst. Growth, vol. 404, 2014, pp. 184-191. https://doi.org/10.1016/j.jcrysgro.2014.07.021
  22. E.G. Víllora et al., "Large-size ${\beta}$-$Ga_2O_3$ single crystals and wafers," J. Cryst. Growth, vol. 270, no. 3-4, 2004, pp. 420-426. https://doi.org/10.1016/j.jcrysgro.2004.06.027
  23. M. Oda et al., "Schottky Barrier Diodes of Corundum-Structured Gallium Oxide Showing On-resistance of $0.1m{\Omega}cm^2$ Grown by Mist Epitaxy," Appl. Phys. Exp., vol. 9, no. 2, 2016, pp. 021101:1021101:3.
  24. K. Konishi et al., "1-kV Vertical $Ga_2O_3$ Field-Plated Schottky Barrier Diodes," Appl. Phys. Lett., vol. 110, 2017, pp. 103506:1-103506:4.
  25. J. Yang et al., "1.5 MeV Electron Irradiation Damage in ${\beta}$-$Ga_2O_3$ Vertical Rectifiers," J. Vacuum Sci. Technol. B, vol. 35, no. 3, 2017, pp. 031208:1-031208:4.
  26. M. Higashiwaki et al., "Gallium Oxide($Ga_2O_3$) Metal-Semiconductor Field-Effect Transistors on Single-Crystal-$Ga_2O_3$(010) Substrates," Appl. Phys. Lett., vol. 100, 2012, pp. 013504:1-013504:3.
  27. M. Higashiwaki et al., "Depletion-Mode $Ga_2O_3$ MOSFETs on ${\beta}$-$Ga_2O_3$(010) Substrates with Si-ion-Implanted Channel and Contacts," IEEE Int. Electron Dev. Meeting, Washington, DC, USA, Dec. 9-11, 2013, pp. 1-4..
  28. M. Higashiwaki et al., "Field-Plated $Ga_2O_3$ MOSFETs with a Breakdown Voltage of over 750 V," IEEE Electron Dev. Lett., vol. 37, no. 2, 2016, pp. 212-215. https://doi.org/10.1109/LED.2015.2512279
  29. K. Zeng et al., "Interface State Density in Atomic Layer Deposited $SiO_2$/${\beta}$-$Ga_2O_3$(201) MOSCAPs," IEEE Electron Device Lett., vol. 37, no. 7, 2016, pp. 906-909. https://doi.org/10.1109/LED.2016.2570521
  30. H. Zhou et al., "High-Performance Depletion/ Enhancement-Mode ${\beta}$-$Ga_2O_3$ on Insulator(GOOI) Field-Effect Transistors with Record Drain Currents of 600/450 mA/mm," IEEE Electron Device Lett., vol. 38, no. 1, 2017, pp. 103-106. https://doi.org/10.1109/LED.2016.2635579
  31. S. Ahn et al., "Effect of 5 MeV Proton Irradiation Damage on Performance of ${\beta}$-$Ga_2O_3$ Photodetectors," J. Vac. Sci. Tech. B, vol. 34, no. 4, 2016, pp. 041213:1-041213:5.
  32. 문재경 외, "산화갈륨 전계효과 트랜지스터 제작 및 특성(Characteristics of ${\beta}$-$Ga_2O_3$ FETs fabricated on Fe-doped S.I. single crystal ${\beta}$-$Ga_2O_3$ substrate)," 2018 한국전기전자재료학회 하계학술대회 OB1-05 (2018).