DOI QR코드

DOI QR Code

An application of the A-PDA model and the water supply performance index for the temporal and spatial evaluation of the performance of emergency water supply plans via interconnections

비상시 용수 연계공급 성능의 시·공간적 평가를 위한 A-PDA 모형 및 공급성능지표의 적용

  • Oak, SueYeun (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Kim, SuRi (Department of Civil Engineering, Seoul National University of Science and Technology) ;
  • Jun, Hwandon (Department of Civil Engineering, Seoul National University of Science and Technology)
  • 옥수연 (서울과학기술대학교 공과대학 건설시스템공학과) ;
  • 김수리 (서울과학기술대학교 공과대학 건설시스템공학과) ;
  • 전환돈 (서울과학기술대학교 공과대학 건설시스템공학과)
  • Received : 2018.08.28
  • Accepted : 2018.09.11
  • Published : 2018.11.30

Abstract

The purpose of the water distribution system is gradually changing to increase the flexibility for responding to various abnormal situations. In addition, it is essential to improve resilience through preparing emergency plans against water supply failure. The most efficient way is emergency interconnections which supply water from interconnected adjacent blocks. To operate successful interconnections, it is essential to evaluate the supply performance in spatial and temporal aspects. The spatial and temporal aspects are dominated by its interconnected pipes and interconnected reservoirs respectively. In this study, an emergency interconnection scenario where problem occurred in reservoir 1 at 0:00hr in A city, Korea. An Advanced-Pressure Driven Analysis model was used to simulate the volume and inflow volume of the interconnected reservoirs. Based on the hydraulic analysis results, a multi-dimensional evaluation of the supply performance was conducted by applying possible water supply range indicator (PWSRI) and possible water supply temporal indicator (PWSTI) which are based on fuzzy membership functions. As a result, it was possible to evaluate the supply performance on the sides of consumers in spatio-temporal aspects and to review whether established plans mitigate the damage as intended. It is expected to be used for decision making on structural and non-structural emergency plan to improve the performance of an emergency interconnection.

상수관망시스템의 운영목적은 탄력성을 높여 각종 비정상상황에 유연하게 대처할 수 있는 방향으로 점차 변화하고 있으며 이에 따라 비정상상황에 따른 단수구역 발생에 대한 사후대책 대비를 통한 탄력성 향상이 필수적이다. 이를 위한 가장 효율적인 방법은 수계전환에 따른 비상공급 수원확보이며, 비상관로를 통하여 인접 배수블록으로부터 단수된 구역에 용수를 공급할 수 있다. 성공적인 비상연계 운영을 위해서는, 수리학적 해석을 통하여 시공간적인 측면에서의 공급성능을 평가해야 한다. 비상연계 시, 공간적인 범위를 결정하는 주요 요소는 관경, 위치 및 관저고와 같은 비상관로에 해당하는 제원이며, 시간적인 범위를 결정하는 주요 요소는 연계배수지의 용량과 정수장에 공급 가능한 추가수량이다. 본 연구에서는 A시의 상수관망에 대하여 배수지 1지에 문제가 발생하여 타 배수지들로부터 비상연계를 받는 시나리오에 대하여 모의를 진행하였다. 배수지의 저류량 및 유입량에 대한 모의를 위하여 Advanced-Pressure Driven Analysis 모형을 사용하였으며, 수리해석 결과를 바탕으로 공급범위기준지표 및 공급시간기준지표를 산정하여 연계공급성능에 대한 다각도적인 평가를 진행하였다. 이에 비상연계에 대하여 소비자들이 실제 체감하는 공급성능을 시공간적인 측면에서 파악할 수 있었으며, 설계제원의 타당성에 대한 검토가 가능하였다. 이는 비상연계 성능향상을 위한 구조적 대책 및 비구조적 대책 수립에 대한 의사결정에 용이하게 활용될 수 있을 것으로 기대한다.

Keywords

References

  1. Ang, W. K., and Jowitt, P. W. (2006). "Solution for Water Distribution Systems Under Pressure-deficient Conditions." Journal of Water Resources Planningand Management, ASCE, Vol. 132, No. 3, pp. 175-182.
  2. Bhave, P. R. (1991). "Analysis of flow in water distribution networks. In Analysis of flow in water distribution networks". Technomic Publishing.
  3. Chang, Y., Kim, J., and Jung, K. (2012). "A Study on the Design and Evaluation of Connection Pipes for Stable Water Supply." Journal of Korean Society of Water and Wastewater, Vol. 26, No. 2, pp. 249-256. https://doi.org/10.11001/jksww.2012.26.2.249
  4. Environmental Protection Agency (2011). "Planning for an Emergency Drinking Water Supply.
  5. Fujiwara, O., and Ganesharajah, T. (1993). "Reliability Assessment of Water Supply Systems with Storage and Distribution Networks." Water Resources Research, Vol. 29, No. 8, pp. 2917-2924. https://doi.org/10.1029/93WR00857
  6. Germanopoulos, G. (1985). "A Technical Note on the Inclusion of Pressure Dependent Demand and Leakage Terms in Water Supply Network Models." Civil Engineering Systems, Vol. 2, No. 3, pp. 171-179. https://doi.org/10.1080/02630258508970401
  7. Jang, D., and Kang, K. (2014). "Experimental Analysis of Nodal Head-outflow Relationship Using a Model Water Supply Network for Pressure Driven Analysis of Water Distribution System." Journal of Korean Society of Environmental Engineers, Vol. 36, No. 6, pp. 421-428. https://doi.org/10.4491/KSEE.2014.36.6.421
  8. Korea Water and Wastewater Works Association (2010). Water Supply Facilities Criteria.
  9. Lee, H. M., Yoo, D. G., Kim, D. Y., and Kim, J. H. (2013). "Development and application of pressure driven analysis model based on EPANET." Journal of Korean Society of Hazard Mitigation, Vol. 13, No. 4, pp. 121-129. https://doi.org/10.9798/KOSHAM.2013.13.4.121
  10. Lee, H. M., Jun H., and Kim, J. H. (2018). "Development and Application of Advanced-Pressrue Driven Analysis Model considering Limited Reservoir." Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 1, pp. 271-280.
  11. Mays, L. W. (2003). "Water Supply System Securit." McGRAWHILL.
  12. Ministry of Environment Korea (2016). Statistics of Water Supply and Sewage System.
  13. NJDEP (2007). Interconnection Study Mitigation of Water Supply Emergencies-Public Version.
  14. Oak, S., Baek, S., Lee, H. M., and Jun, H. (2018a). "An Application of the A-PDA Model For the Interconnected Operation Amon Adjacent Blocks of Water Distribution Systems In Case of Emergency." Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 2, pp. 231-237. https://doi.org/10.9798/kosham.2018.18.2.231
  15. Oak, S., You, K., Noh, H., and Jun, H. (2018b). "A Development of Supply Performance Indicator in a Water Distribution System Using Fuzzy Sets and a PDA Model." Journal of Korean Society of Hazard Mitigation, Vol. 18, No. 2, pp. 289-297. https://doi.org/10.9798/kosham.2018.18.2.289
  16. Rossman, L. A. (2000). EPANET 2: users manual. Cincinnati, OH: EPA (US Environmental Protection Agency).
  17. Shirzad, A., and Tabesh, M. (2012). "Study of PressureDischarge Relations in Water Distribution Networks Using Field Measurements." Proceedings of the IWA World Water Congress & Exhibition, Busan, Korea.
  18. Tanyimboh, T. T., and Templemen, A. B. (2010). "Seamless Pressuredeficient Water Distribution System Model" Proceedings of the Institution of Civil Engineers - Water Management, Vol. 163, No. 8, pp. 389-396. https://doi.org/10.1680/wama.900013
  19. Wood, D. J. (1980). "Computer Analysis of Flow in Pipe Networks Including Extended Period Simulations: User's Manual." Office of Continuing Education and Extension of the College of Engineering of the University of Kentucky.