DOI QR코드

DOI QR Code

Isolation and Characterization of a Lytic and Highly Specific Phage against Yersinia enterocolitica as a Novel Biocontrol Agent

  • Gwak, Kyoung Min (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Choi, In Young (School of Food Science and Biotechnology, Kyungpook National University) ;
  • Lee, Jinyoung (Department of Plant and Food Sciences, Sangmyung University) ;
  • Oh, Jun-Hyun (Department of Plant and Food Sciences, Sangmyung University) ;
  • Park, Mi-Kyung (School of Food Science and Biotechnology, Kyungpook National University)
  • Received : 2018.08.01
  • Accepted : 2018.09.12
  • Published : 2018.11.28

Abstract

The aim of this study was to isolate and characterize a lytic Yersinia enterocolitica-specific phage (KFS-YE) as a biocontrol agent. KFS-YE was isolated and purified with the final concentration of ($11.72{\pm}0.03$) log PFU/ml from poultry. As observed by transmission electron microscopy, KFS-YE consisted of an icosahedral head and a contractile tail, and was classified in the Myoviridae family. KFS-YE showed excellent narrow specificity against Y. enterocolitica only. Its lytic activity was stable at wide ranges of pH (4-11) and temperature ($4-50^{\circ}C$). The latent period and burst size of KFS-YE were determined to be 45 min and 38 PFU/cell, respectively. KFS-YE showed relatively robust storage stability at -20, 4, and $22^{\circ}C$ for 40 weeks. KFS-YE demonstrated a bactericidal effect in vitro against Y. enterocolitica and provided excellent efficiency with a multiplicity of infection as low as 0.01. This study demonstrated the excellent specificity, stability, and efficacy of KFS-YE as a novel biocontrol agent. KFS-YE may be employed as a practical and promising biocontrol agent against Y. enterocolitica in food.

Keywords

References

  1. Pajunen M, Kiljunen S, Skurnik M. 2000. Bacteriophage ${\phi}$YeO3-12, specific for Yersinia enterocolitica serotype O: 3, is related to coliphages T3 and T7. J. Bacteriol 182: 5114-5120. https://doi.org/10.1128/JB.182.18.5114-5120.2000
  2. Salem M, Virtanen S, Korkeala H, Skurnik M. 2015. Isolation and characterization of Yersinia-specific bacteriophages from pig stools in Finland. J. Appl. Microbiol. 118: 599-608. https://doi.org/10.1111/jam.12722
  3. Rahman A, Bonny TS, Stonsaovapak S, Ananchaipattana C. 2011. Yersinia enterocolitica: Epidemiological studies and outbreaks. J. Pathog. 2011: 239391.
  4. Harris L, Farber J, Beuchat L, Parish M, Suslow T, Garrett E, et al. 2003. Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Compr. Rev. Food Sci. Food Saf. 2: 78-141. https://doi.org/10.1111/j.1541-4337.2003.tb00031.x
  5. MacDonald E, Einoder-Moreno M, Borgen K, Brandal LT, Diab L, Fossli, et al. 2016. National outbreak of Yersinia enterocolitica infections in military and civilian populations associated with consumption of mixed salad, Norway, 2014. Euro Surveill. 21. doi: 10.2807/1560-7917.
  6. EFSA, 2012. The european union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2010. Euro Surveill 17: 2597.
  7. Bottone EJ. 1997. Yersinia enterocolitica: the charisma continues. Clin. Microbiol. Rev. 10: 257-276. https://doi.org/10.1128/CMR.10.2.257
  8. Rashid MH, Revazishvili T, Dean T, Butani A, Verratti K, Bishop-Lilly KA, et al. 2012. A Yersinia pestis-specific, lytic phage preparation significantly reduces viable Y. pestis on various hard surfaces experimentally contaminated with the bacterium. Bacteriophage 2: 168-177. https://doi.org/10.4161/bact.22240
  9. Hwang S, Yun J, Kim KP, Heu S, Lee S, Ryu S. 2009. Isolation and characterization of bacteriophages specific for Campylobacter jejuni. Microbiol Immunol. 53: 559-566. https://doi.org/10.1111/j.1348-0421.2009.00163.x
  10. Park M-K, Oh J-H, Chin BA. 2011. The effect of incubation temperature on the binding of Salmonella typhimurium to phage-based magnetoelastic biosensors. Sens. Actuators B: Chem. 160: 1427-1433. https://doi.org/10.1016/j.snb.2011.10.003
  11. Byeon HM, Vodyanoy VJ, Oh J-H, Kwon J-H, Park M-K. 2015. Lytic phage-based magnetoelastic biosensors for onsite detection of methicillin-resistant Staphylococcus aureus on spinach leaves. J. Electrochem. Soc. 162: B230-B235. https://doi.org/10.1149/2.0681508jes
  12. Hudson J, Billington C, Carey-Smith G, Greening G. 2005. Bacteriophages as biocontrol agents in food. J. Food Prot. 68: 426-437. https://doi.org/10.4315/0362-028X-68.2.426
  13. Owens J, Barton MD, Heuzenroeder MW. 2013. The isolation and characterization of Campylobacter jejuni bacteriophages from free range and indoor poultry. Vet. Microbiol. 162: 144-150. https://doi.org/10.1016/j.vetmic.2012.08.017
  14. Choi IY, Lee J-H, Kim H-J, Park M-K. 2017. Isolation and characterization of a novel broad-host-range bacteriophage infecting Salmonella enterica subsp. enterica for biocontrol and rapid detection. J. Microbiol. Biotechnol. 27: 2151-2155. https://doi.org/10.4014/jmb.1711.11017
  15. Sharma M. 2013. Lytic bacteriophages. Bacteriophage 3: e25518. https://doi.org/10.4161/bact.25518
  16. Cox N, Berrang M, Cason J. 2000. Salmonella penetration of egg shells and proliferation in broiler hatching eggs--a review. Poult. Sci. 79: 1571-1574. https://doi.org/10.1093/ps/79.11.1571
  17. Oh J-H, Park M-K. 2017. Recent trends in Salmonella outbreaks and emerging technology for biocontrol of Salmonella using phages in foods: a review. J. Microbiol. Biotechnol. 27: 2075-2088. https://doi.org/10.4014/jmb.1710.10049
  18. Stevenson R, Airdrie D. 1984. Isolation of Yersinia ruckeri bacteriophages. Appl. Environ. Microbiol. 47: 1201-1205.
  19. Popp A, Hertwig S, Lurz R, Appel B. 2000. Comparative study of temperate bacteriophages isolated from Yersinia. Syst. Appl. Microbiol. 23: 469-478. https://doi.org/10.1016/S0723-2020(00)80020-X
  20. Pujato SA, Guglielmotti DM, Ackermann H-W, Patrignani F, Lanciotti R, Reinheimer JA, et al. 2014. Leuconostoc bacteriophages from blue cheese manufacture: long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application. Int. J. Food Microbiol. 177: 81-88. https://doi.org/10.1016/j.ijfoodmicro.2014.02.012
  21. Park M-K, Wikle III HC, Chai Y, Horikawa S, Shen W, Chin BA. 2012. The effect of incubation time for Salmonella Typhimurium binding to phage-based magnetoelastic biosensors. Food Control. 26: 539-545. https://doi.org/10.1016/j.foodcont.2012.01.061
  22. Verma V, Harjai K, Chhibber S. 2009. Characterization of a T7-like lytic bacteriophage of Klebsiella pneumoniae B5055: a potential therapeutic agent. Curr. Microbiol. 59: 274-281. https://doi.org/10.1007/s00284-009-9430-y
  23. Ackermann H-W, DuBow M, Jarvis A, Jones L, Krylov V, Maniloff J, et al. 1992. The species concept and its application to tailed phages. Arch. Virol. 124: 69-82. https://doi.org/10.1007/BF01314626
  24. Bradley DE. 1967. Ultrastructure of bacteriophage and bacteriocins. Bacteriol. Rev. 31: 230-314.
  25. Puapermpoonsiri U, Ford S, Van der Walle C. 2010. Stabilization of bacteriophage during freeze drying. Int. J. Pharm. 389: 168-175. https://doi.org/10.1016/j.ijpharm.2010.01.034
  26. Golec P, Dabrowski K, Hejnowicz MS, Gozdek A, Los JM, Węgrzyn G, et al. 2011. A reliable method for storage of tailed phages. J. Microbiol. Methods 84: 486-489. https://doi.org/10.1016/j.mimet.2011.01.007
  27. Li L, Zhang Z. 2014. Isolation and characterization of a virulent bacteriophage SPW specific for Staphylococcus aureus isolated from bovine mastitis of lactating dairy cattle. Mol. Biol. Rep. 41: 5829-5838. https://doi.org/10.1007/s11033-014-3457-2
  28. Haq IU, Chaudhry WN, Andleeb S, Qadri I. 2012. Isolation and partial characterization of a virulent bacteriophage IHQ1 specific for Aeromonas punctata from stream water. Microb. Ecol. 63: 954-963. https://doi.org/10.1007/s00248-011-9944-2
  29. Park M, Lee J-H, Shin H, Kim M, Choi J, Kang D-H, et al. 2012. Characterization and comparative genomic analysis of a novel bacteriophage SFP10 simultaneously inhibiting both Salmonella and Escherichia coli O157: H7. Appl. Environ. Microbiol. 78: 58-69. https://doi.org/10.1128/AEM.06231-11
  30. Yang H, Liang L, Lin S, Jia S. 2010. Isolation and characterization of a virulent bacteriophage AB1 of Acinetobacter baumannii. BMC Microbiol. 10: 131. https://doi.org/10.1186/1471-2180-10-131
  31. Ackermann H-W, Tremblay D, Moineau S. 2004. Long-term bacteriophage preservation. WFCC Newslett. 38: 35-40.
  32. Capra M, Quiberoni AdL, Ackermann H-W, Moineau S, Reinheimer J. 2006. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J. Dairy Sci. 89: 2414-2423. https://doi.org/10.3168/jds.S0022-0302(06)72314-1
  33. Weinbauer MG. 2004. Ecology of prokaryotic viruses. FEMS Microbiol. Rev. 28: 127-181. https://doi.org/10.1016/j.femsre.2003.08.001
  34. Jun JW, Kim HJ, Yun SK, Chai JY, Lee BC, Park SC. 2016. Isolation and comparative genomic analysis of T1-like Shigella bacteriophage pSf-2. Curr. Microbiol. 72: 235-241.
  35. Shen G-H, Wang J-L, Wen F-S, Chang K-M, Kuo C-F, Lin C-H, et al. 2012. Isolation and characterization of ${\phi}$km18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii. PLoS One 7: e46537. https://doi.org/10.1371/journal.pone.0046537
  36. Kim M, Ryu S. 2011. Characterization of a T5-like coliphage SPC35 and differential development of resistance to SPC35 in Salmonella Typhimurium and Escherichia coli. Appl. Environ. Microbiol. 77: 2041-2050.
  37. Yamaki S, Omachi T, Kawai Y, Yamazaki K. 2014. Characterization of a novel Morganella morganii bacteriophage FSP1 isolated from river water. FEMS Microbiol. Lett. 359:166-172. https://doi.org/10.1111/1574-6968.12560
  38. Gnanasekaran G, Na EJ, Chung HY, Kim S, Kim Y-T, Kwak W, et al. 2017. Genomic isights and its comparative analysis with Yersinia enterocolitica reveals the potential virulence determinants and further pathogenicity for foodborne outbreaks. J. Microbiol. Biotechnol. 27: 262-270. https://doi.org/10.4014/jmb.1611.11048
  39. Kasatiya S, Ackermann H-W. 1986. Morphology of Yersinia enterocolitica phages. Ann. Inst. Pasteur. Virol. 137: 59-69. https://doi.org/10.1016/S0769-2617(86)80188-5
  40. Schwudke D, Ergin A, Michael K, Volkmar S, Appel B, Knabner D, et al. 2008. Broad-host-range Yersinia phage PY100: genome sequence, proteome analysis of virions, and DNA packaging strategy. J. Bacteriol. 190: 332-342. https://doi.org/10.1128/JB.01402-07
  41. Leon-Velarde CG, Kropinski AM, Chen S, Abbasifar A, Griffiths MW, Odumeru JA. 2014. Complete genome sequence of bacteriophage vB_YenP_AP5 which infects Yersinia enterocolitica of serotype O: 3. Virol. J. 11: 188. https://doi.org/10.1186/1743-422X-11-188

Cited by

  1. Exploring the feasibility of Salmonella Typhimurium-specific phage as a novel bio-receptor vol.62, pp.5, 2018, https://doi.org/10.5187/jast.2020.62.5.668
  2. C22 podovirus infectivity is associated with intermediate stiffness vol.10, pp.None, 2020, https://doi.org/10.1038/s41598-020-69409-w
  3. Characterization of a New and Efficient Polyvalent Phage Infecting E. coli O157:H7, Salmonella spp., and Shigella sonnei vol.9, pp.10, 2018, https://doi.org/10.3390/microorganisms9102105
  4. Properties of Two Broad Host Range Phages of Yersinia enterocolitica Isolated from Wild Animals vol.22, pp.21, 2018, https://doi.org/10.3390/ijms222111381
  5. BtuB-Dependent Infection of the T5-like Yersinia Phage ϕR2-01 vol.13, pp.11, 2021, https://doi.org/10.3390/v13112171