References
- Chen JK, Shen CR, Liu CL. 2010. N-acetylglucosamine: production and applications. Marine Drugs 8: 2493-2516. https://doi.org/10.3390/md8092493
- Nakamura H. 2011. Application of glucosamine on human disease-Osteoarthritis. Carbohydr. Polym. 84: 835-839. https://doi.org/10.1016/j.carbpol.2010.08.078
- Hungerford DS, Jones LC. 2003. Glucosamine and chondroitin sulfate are effective in the management of osteoarthritis. J. Arthroplasty. 18: 5-9. https://doi.org/10.1054/arth.2003.50067
- Towheed TE. 2003. Current status of glucosamine therapy in osteoarthritis. Arthritis Rheum. 49: 601-604. https://doi.org/10.1002/art.11183
- Sitanggang AB, Wu HS, Wang SS, Ho YC. 2010. Effect of pellet size and stimulating factor on the glucosamine production using Aspergillus sp. BCRC 31742. Bioresour. Technol. 101: 3595-3601. https://doi.org/10.1016/j.biortech.2009.12.084
- Zhang J, Liu L, Li J, Du G, Chen J. 2012. Enhanced glucosamine production by Aspergillus sp. BCRC 31742 based on the time-variant kinetics analysis of dissolved oxygen level. Bioresour. Technol. 111: 507-511. https://doi.org/10.1016/j.biortech.2012.02.063
- Chen X, Liu L, Li J, Du G, Chen J. 2012. Improved glucosamine and N-acetylglucosamine production by an engineered Escherichia coli via step-wise regulation of dissolved oxygen level. Bioresour. Technol. 110: 534-538. https://doi.org/10.1016/j.biortech.2011.12.015
- Deng MD, Severson DK, Grund AD, Wassink SL, Burlingame RP, Berry A, et al. 2005. Metabolic engineering of Escherichia coli for industrial production of glucosamine and N-acetylglucosamine. Metab. Eng. 7: 201-214. https://doi.org/10.1016/j.ymben.2005.02.001
- Liu Y, Liu L, Shin HD, Chen RR, Li J, Du G, et al. 2013. Pathway engineering of Bacillus subtilis for microbial production of N-acetylglucosamine. Metab. Eng. 19: 107-115. https://doi.org/10.1016/j.ymben.2013.07.002
- Mine S, Ikegami T, Kawasaki K, Nakamura T, Uegaki K. 2012. Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Expr. Purif. 84: 265-269. https://doi.org/10.1016/j.pep.2012.06.002
- Kang Z, Yang S, Du G, Chen J. 2014. Molecular engineering of secretory machinery components for high-level secretion of proteins in Bacillus species. J. Ind. Microbiol. Biotechnol. 41: 1599-1607. https://doi.org/10.1007/s10295-014-1506-4
- Tanaka T, Fukui T, Fujiwara S, Atomi H, Imanaka T. 2004. Concerted action of diacetylchitobiose deacetylase and exobeta- D-glucosaminidase in a novel chitinolytic pathway in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J. Biol. Chem. 279: 30021-30027. https://doi.org/10.1074/jbc.M314187200
- Mine S, Niiyama M, Hashimoto W, Ikegami T, Koma D, Ohmoto T, et al. 2014. Expression from engineered Escherichia coli chromosome and crystallographic study of archaeal N,N'-diacetylchitobiose deacetylase. FEBS J. 281: 2584-2596. https://doi.org/10.1111/febs.12805
- Nicolas P, Mader U, Dervyn E, Rochat T, Leduc A, Pigeonneau N, et al. 2012. Condition-dependent transcriptome reveals high-level regulatory architecture in Bacillus subtilis. Science 335: 1103-1106. https://doi.org/10.1126/science.1206848
- Promchai R, Promdonkoy B, Tanapongpipat S, Visessanguan W, Eurwilaichitr L, Luxananil P. 2016. A novel salt-inducible vector for efficient expression and secretion of heterologous proteins in Bacillus subtilis. J. Biotechnol. 222: 86-93. https://doi.org/10.1016/j.jbiotec.2016.02.019
- Bertram R , Rigali S , Wood N , L ulko A T, K uipers O P, Titgemeyer F. 2011. Regulon of the N-acetylglucosamine utilization regulator NagR in Bacillus subtilis. J. Bacteriol. 193: 3525-3536. https://doi.org/10.1128/JB.00264-11
- Vincent F, Yates D, Garman E, Davies GJ, Brannigan JA. 2004. The three-dimensional structure of the N-acetylglucosamine- 6-phosphate deacetylase, NagA, from Bacillus subtilis: a member of the urease superfamily. J. Biol. Chem. 279: 2809-2816. https://doi.org/10.1074/jbc.M310165200
- Song Y, Li J, Shin HD, Du G, Liu L, Chen J. 2015. One-step biosynthesis of alpha-ketoisocaproate from L-leucine by an Escherichia coli whole-cell biocatalyst expressing an L-amino acid deaminase from Proteus vulgaris. Sci. Rep. 5: 12614. https://doi.org/10.1038/srep12614
- Westers L, Westers H, Quax WJ. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochim. Biophys. Acta 1694: 299-310. https://doi.org/10.1016/j.bbamcr.2004.02.011
- Zhang XZ, Cui ZL, Hong Q, Li SP. 2005. High-level expression and secretion of methyl parathion hydrolase in Bacillus subtilis WB800. Appl. Environ. Microbiol. 71: 4101-4103. https://doi.org/10.1128/AEM.71.7.4101-4103.2005
- Mine S, Ikegami T, Kawasaki K, Nakamura T, Uegaki K. 2012. Expression, refolding, and purification of active diacetylchitobiose deacetylase from Pyrococcus horikoshii. Protein Express. Purification 84: 265-269. https://doi.org/10.1016/j.pep.2012.06.002
- Shi F, Li K, Huan X, Wang X. 2013. Expression of NAD(H) kinase and glucose-6-phosphate dehydrogenase improve NADPH supply and L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Appl. Biochem. Biotechnol. 171: 504-521. https://doi.org/10.1007/s12010-013-0389-6
- Blombach B, Schreiner ME, Holatko J, Bartek T, Oldiges M, Eikmanns BJ. 2007. L-valine production with pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum. Appl. Environ. Microbiol. 73: 2079-2084. https://doi.org/10.1128/AEM.02826-06
Cited by
- Secretory Expression Fine-Tuning and Directed Evolution of Diacetylchitobiose Deacetylase by Bacillus subtilis vol.85, pp.17, 2018, https://doi.org/10.1128/aem.01076-19
- Artificial in Vitro Synthetic Enzymatic Biosystem for the One-Pot Sustainable Biomanufacturing of Glucosamine from Starch and Inorganic Ammonia vol.10, pp.None, 2018, https://doi.org/10.1021/acscatal.0c03767
- High level production of diacetylchitobiose deacetylase by refactoring genetic elements and cellular metabolism vol.341, pp.None, 2021, https://doi.org/10.1016/j.biortech.2021.125836