DOI QR코드

DOI QR Code

Isolation and Characterization of Lactic Acid Bacteria from Fermented Goat Milk in Tajikistan

  • Cho, Gyu-Sung (Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Microbiology and Biotechnology) ;
  • Cappello, Claudia (Department of Agricultural Food Sciences, University of Bologna) ;
  • Schrader, Katrin (Department of Safety and Quality of Milk and Fish Products) ;
  • Fagbemigun, Olakunle (Department of Microbiology, Faculty of Science, University of Lagos) ;
  • Oguntoyinbo, Folarin A. (Department of Microbiology, Faculty of Science, University of Lagos) ;
  • Csovcsics, Claudia (Physiology and Biochemistry of Nutrition) ;
  • Rosch, Niels (Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Microbiology and Biotechnology) ;
  • Kabisch, Jan (Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Microbiology and Biotechnology) ;
  • Neve, Horst (Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Microbiology and Biotechnology) ;
  • Bockelmann, Wilhelm (Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Microbiology and Biotechnology) ;
  • Briviba, Karlis (Physiology and Biochemistry of Nutrition) ;
  • Modesto, Monica (Department of Agricultural Food Sciences, University of Bologna) ;
  • Cilli, Elisabetta (Department of Cultural Heritage, University of Bologna) ;
  • Mattarelli, Paola (Department of Agricultural Food Sciences, University of Bologna) ;
  • Franz, Charles M.A.P (Max Rubner-Institut, Federal Research Institute for Nutrition and Food, Department of Microbiology and Biotechnology)
  • Received : 2018.08.08
  • Accepted : 2018.10.16
  • Published : 2018.11.28

Abstract

The lactobacilli associated with a fermented goat milk product from Tajikistan were isolated to characterize their technological properties and antibiotic resistances in order to assess their suitability for development as starter cultures. In this study, twenty three strains were identified by 16S rRNA sequencing as typical dairy-associated lactic acid bacterial strains, i.e. L. plantarum, L. pentosus, L. delbrueckii, L. helveticus and L. paracasei. These strains were generally susceptible to most antibiotics tested in this study and this allowed a selection of strains as safe starters. The draft genomes of four representative strains were sequenced and the number of contigs of the four assembled genomes ranged from 51 to 245 and the genome sizes ranged from 1.75 to 3.24 Mbp. These representative strains showed differences in their growth behavior and pH-reducing abilities in in vitro studies. The co-inoculation of these Lactobacillus spp. strains together with a yeast Kluyveromyces marxianus MBT-5698, or together with the yeast and an additional Streptococcus thermophilus MBT-2, led to a pH reduction to 3.4 after 48 h. Only in the case of fermentation inoculated with the co-culture, the viscosity of the milk increased noticeably. In contrast, fermentations with single strains did not lead to gelation of the milk or to a decrease in the pH after 24h. The results of this study provide a comprehensive understanding of the predominant lactobacilli related to Tajikistani fermented milk products.

Keywords

References

  1. Holzapfel WH. 2002. Appropriate starter culture technologies for small-scale fermentation in developing countries. Int. J. Food Microbiol. 75: 197-212. https://doi.org/10.1016/S0168-1605(01)00707-3
  2. Leroy F, De Vuyst L. 2004. Lactic acid bacteria as functional starter cultures for the food fermentation industry. Trends Food Sci. Technol. 15: 67-78. https://doi.org/10.1016/j.tifs.2003.09.004
  3. Oguntoyinbo FA, Cho GS, Trierweiler B, Kabisch J , Rosch N, Neve H, et al. 2016. Fermentation of African kale (Brassica carinata) using L. plantarum BFE 5092 and L. fermentum BFE 6620 starter strains. Int. J. Food Microbiol. 238: 103-112. https://doi.org/10.1016/j.ijfoodmicro.2016.08.030
  4. Tamang JP, Watanabe K, Holzapfel WH. 2016. Review: diversity of microorganisms in global fermented foods and beverages. Front Microbiol. 7: 377.
  5. Blandino A, Al-Aseeri ME, Pandiella SS, Cantero D, Webb C. 2003. Cereal-based fermented foods and beverages. Food Res. Int. 36: 527-543. https://doi.org/10.1016/S0963-9969(03)00009-7
  6. Franz CMAP, Huch M, Mathara JM, Abriouel H, Benomar N, Reid G, et al. 2014. African fermented foods and probiotics. Int. J. Food Microbiol. 190: 84-96. https://doi.org/10.1016/j.ijfoodmicro.2014.08.033
  7. Marsh AJ, O'Sullivan O, Hill C, Ross RP, Cotter PD. 2014. Sequence-based analysis of the bacterial and fungal compositions of multiple kombucha (tea fungus) samples. Food Microbiol. 38: 171-178. https://doi.org/10.1016/j.fm.2013.09.003
  8. Qvirist LA, De Filippo C, Strati F, Stefanini I, Sordo M, Andlid T, et al. 2016. Isolation, identification and characterization of yeasts from fermented goat milk of the Yaghnob Valley in Tajikistan. Front Microbiol. 7: 1690.
  9. Powers EM. 1995. Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of foodborne and waterborne bacteria and yeasts. Appl. Environ. Microbiol. 61: 3756-3758.
  10. Mathara J M, Schillinger U , Kutima PM, Mbugua SK, Holzapfel WH. 2004. Isolation, identification and characterisation of the dominant microorganisms of kule naoto: the Maasai traditional fermented milk in Kenya. Int. J. Food Microbiol. 94: 269-278. https://doi.org/10.1016/j.ijfoodmicro.2004.01.008
  11. Pitcher DG, Saunders NA, Owen RJ. 1989. Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett. Appl. Microbiol. 8: 151-156. https://doi.org/10.1111/j.1472-765X.1989.tb00262.x
  12. Bjorkroth J, Korkeala H. 1996. rRNA gene restriction patterns as a characterization tool for Lactobacillus sake strains producing ropy slime. Int. J. Food Microbiol. 30: 293-302. https://doi.org/10.1016/0168-1605(96)00955-5
  13. Kim OS, Cho YJ, Lee K, Yoon SH, Kim M, Na H, et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62: 716-721. https://doi.org/10.1099/ijs.0.038075-0
  14. Yousif NM, Huch M, Schuster T, Cho G S, Dirar H A, Holzapfel WH, et al. 2010. Diversity of lactic acid bacteria from Hussuwa, a traditional African fermented sorghum food. Food Microbiol. 27: 757-768. https://doi.org/10.1016/j.fm.2010.03.012
  15. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  16. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
  17. Gurevich A, Saveliev V, Vyahhi N, Tesler G. 2013. QUAST: quality assessment tool for genome assemblies. Bioinformatics 29: 1072-1075. https://doi.org/10.1093/bioinformatics/btt086
  18. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genom. 9: 75. https://doi.org/10.1186/1471-2164-9-75
  19. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. 2012. Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67: 2640-2644. https://doi.org/10.1093/jac/dks261
  20. Carattoli A, Zankari E, Garcia-Fernandez A, Voldby Larsen M, Lund O, Villa L, et al. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58: 3895-3903. https://doi.org/10.1128/AAC.02412-14
  21. Klare I , Konstabel C, Muller-Bertling S, Reissbrodt R, Huys G, Vancanneyt M, et al. 2005. Evaluation of new broth media for microdilution antibiotic susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bifidobacteria. Appl. Environ. Microbiol. 71: 8982-8986. https://doi.org/10.1128/AEM.71.12.8982-8986.2005
  22. EFSA. 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10: 1-10.
  23. Douillard FP, de Vos WM. 2014. Functional genomics of lactic acid bacteria: from food to health. Microb. Cell Fact. 13(Suppl 1): S8. https://doi.org/10.1186/1475-2859-13-S1-S8
  24. Dellaglio F, Felis GE, Castioni A, Torriani S, Germond JE. 2005. Lactobacillus delbrueckii subsp. indicus subsp. nov., isolated from Indian dairy products. Int. J. Syst. Evol. Microbiol. 55: 401-404. https://doi.org/10.1099/ijs.0.63067-0
  25. Adimpong DB, Nielsen DS, Sorensen KI, Vogensen FK, Sawadogo-Lingani H, Derkx PM, et al. 2013. Lactobacillus delbrueckii subsp. jakobsenii subsp. nov., isolated from dolo wort, an alcoholic fermented beverage in Burkina Faso. Int. J. Syst. Evol. Microbiol. 63: 3720-3726. https://doi.org/10.1099/ijs.0.048769-0
  26. Pot B, Felis GE, Bruyne KD, Tsakalidou E, Papadimitriou K, Leisner J, et al. 2014. The genus Lactobacillus, pp. 249-353. Lactic Acid Bacteria, Ed. John Wiley & Sons, Ltd,
  27. Torriani S, Felis GE, Dellaglio F. 2001. Differentiation of Lactobacillus plantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 67: 3450-3454. https://doi.org/10.1128/AEM.67.8.3450-3454.2001
  28. Kostinek M, Specht I, Edward VA, Schillinger U, Hertel C, Holzapfel WH, et al. 2005. Diversity and technological properties of predominant lactic acid bacteria from fermented cassava used for the preparation of Gari, a traditional African food. Syst. Appl. Microbiol. 28: 527-540. https://doi.org/10.1016/j.syapm.2005.03.001
  29. Bringel F, Curk MC, Hubert JC. 1996. Characterization of lactobacilli by Southern-type hybridization with a Lactobacillus plantarum pyrDFE probe. Int. J. Syst. Bacteriol. 46: 588-594. https://doi.org/10.1099/00207713-46-2-588
  30. Naser SM, Hagen KE, Vancanneyt M, Cleenwerck I, Swings J, Tompkins TA. 2006. Lactobacillus suntoryeus Cachat and Priest 2005 is a later synonym of Lactobacillus helveticus (Orla-Jensen 1919) Bergey et al. 1925 (Approved Lists 1980). Int. J. Syst. Evol. Microbiol. 56: 355-360. https://doi.org/10.1099/ijs.0.64001-0
  31. Giraffa G. 2014. Lactobacillus helveticus: importance in food and health. Front Microbiol. 5: 338.
  32. Sesena S, Sanchez I, Palop L. 2004. Genetic diversity (RAPDPCR) of lactobacilli isolated from "Almagro" eggplant fermentations from two seasons. FEMS Microbiol. Lett. 238: 159-165.
  33. Griffiths MW, Tellez AM. 2013. Lactobacillus helveticus: the proteolytic system. Front Microbiol. 4: 30.
  34. Slattery L, O'Callaghan J, Fitzgerald GF, Beresford T, Ross RP. 2010. Invited review: Lactobacillus helveticus--a thermophilic dairy starter related to gut bacteria. J. Dairy Sci. 93: 4435-4454. https://doi.org/10.3168/jds.2010-3327
  35. Settachaimongkon S, Nout MJ, Antunes Fernandes EC, Hettinga KA, Vervoort JM, van Hooijdonk TC, et al. 2014. Influence of different proteolytic strains of Streptococcus thermophilus in co-culture with Lactobacillus delbrueckii subsp. bulgaricus on the metabolite profile of set-yoghurt. Int. J. Food Microbiol. 177: 29-36. https://doi.org/10.1016/j.ijfoodmicro.2014.02.008
  36. Plessas S, Bosnea L, Psarianos C, Koutinas AA, Marchant R, Banat IM. 2008. Lactic acid production by mixed cultures of Kluyveromyces marxianus, Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus helveticus. Bioresour. Technol. 99: 5951-5955. https://doi.org/10.1016/j.biortech.2007.10.039
  37. Devirgiliis C, Zinno P, Perozzi G. 2013. Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Front Microbiol. 4: 301.
  38. Lin CF, Fung ZF, Wu CL, Chung TC. 1996. Molecular characterization of a plasmid-borne (pTC82) chloramphenicol resistance determinant (cat-TC) from Lactobacillus reuteri G4. Plasmid 36: 116-124. https://doi.org/10.1006/plas.1996.0039
  39. Cataloluk O, Gogebakan B. 2004. Presence of drug resistance in intestinal lactobacilli of dairy and human origin in Turkey. FEMS Microbiol. Lett. 236: 7-12. https://doi.org/10.1111/j.1574-6968.2004.tb09620.x
  40. Huys G, D'Haene K, Collard JM, Swings J. 2004. Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl. Environ. Microbiol. 70: 1555-1562. https://doi.org/10.1128/AEM.70.3.1555-1562.2004
  41. Huys G, D'Haene K, Swings J. 2006. Genetic basis of tetracycline and minocycline resistance in potentially probiotic Lactobacillus plantarum strain CCUG 43738. Antimicrob. Agents Chemother. 50: 1550-1551. https://doi.org/10.1128/AAC.50.4.1550-1551.2006
  42. Temmerman R, Pot B, Huys G, Swings J. 2003. Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int. J. Food Microbiol. 81: 1-10. https://doi.org/10.1016/S0168-1605(02)00162-9
  43. Ammor MS, Florez AB, Mayo B. 2007. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiol. 24: 559-570. https://doi.org/10.1016/j.fm.2006.11.001
  44. Hugenholtz J. 1993. Citrate metabolism in lactic acid bacteria. FEMS Microbiol. Rev. 12: 165-178. https://doi.org/10.1111/j.1574-6976.1993.tb00017.x

Cited by

  1. Indigenous Lactic Acid Bacteria Isolated from Spontaneously Fermented Goat Milk as Potential Probiotics vol.23, pp.7, 2020, https://doi.org/10.3923/pjbs.2020.883.890
  2. Isolation and Characterization of Potential Starter Cultures from the Nigerian Fermented Milk Product nono vol.9, pp.3, 2021, https://doi.org/10.3390/microorganisms9030640
  3. Antimicrobial Susceptibility of Lactobacillus delbrueckii subsp. lactis from Milk Products and Other Habitats vol.10, pp.12, 2018, https://doi.org/10.3390/foods10123145