참고문헌
- Joux F, Lebaron P. 2000. Use of fluorescent probes to assess physiological functions of bacteria at single-cell level. Microbes Infect. 2: 1523-1535. https://doi.org/10.1016/S1286-4579(00)01307-1
- Xu L, Zhang C, Xu P, Wang XC. 2017. Mechanisms of ultraviolet disinfection and chlorination of Escherichia coli: culturability, membrane permeability, metabolism, and genetic damage. J. Environ. Sci. (China) 65: 356-366.
- Strahl H, Hamoen LW. 2010. Membrane potential is important for bacterial cell division. Proc. Natl. Acad. Sci. USA 107: 12281-12286. https://doi.org/10.1073/pnas.1005485107
- McFeters GA, Feipeng PY, Pyle BH, Stewart PS. 1995. Physiological assessment of bacteria using fluorochromes. J. Microbiol. Methods 21: 1-13. https://doi.org/10.1016/0167-7012(94)00027-5
- Breeuwer P, Abee T. 2000. Assessment of viability of microorganisms employing fluorescence techniques. Int. J. Food Microbiol. 55: 193-200. https://doi.org/10.1016/S0168-1605(00)00163-X
- Strauber H, Muller S. 2010. Viability states of bacteria - specific mechanisms of selected probes. Cytometry A 77: 623-634.
- Kaprelyants A, Kell D. 1992. Rapid assessment of bacterial viability and vitality by rhodamine 123 and flow cytometry. J. Appl. Microbiol. 72: 410-422.
- Diaper J, Tither K, Edwards C. 1992. Rapid assessment of bacterial viability by flow cytometry. Appl. Microbiol. Biotechnol. 38: 268-272.
- Novo DJ, Perlmutter NG, Hunt RH, Shapiro HM. 2000. Multiparameter flow cytometric analysis of antibiotic effects on membrane potential, membrane permeability, and bacterial counts of Staphylococcus aureus and Micrococcus luteus. Antimicrob. Agents Chemother. 44: 827-834. https://doi.org/10.1128/AAC.44.4.827-834.2000
- Zhao J-Y, Jia L-M, Song W-Q, Zhang W-L, Fu Y-M, Zhang Y, et al. 2014. Labeling efficiency and toxicity evaluation of CdSe/ZnS quantum dots on Escherichia coli. J. Nanopart. Res. 16: 2424. https://doi.org/10.1007/s11051-014-2424-0
- Chung J, Kang JS, Jurng JS, Jung JH, Kim BC. 2015. Fast and continuous microorganism detection using aptamer-conjugated fluorescent nanoparticles on an optofluidic platform. Biosens. Bioelectron. 67: 303-308. https://doi.org/10.1016/j.bios.2014.08.039
- Emaus RK, Grunwald R, Lemasters JJ. 1986. Rhodamine 123 as a probe of transmembrane potential in isolated rat-liver mitochondria: spectral and metabolic properties. Biochim. Biophys. Acta 850: 436-448. https://doi.org/10.1016/0005-2728(86)90112-X
- Porter J, Pickup R, Edwards C. 1995. Membrane hyperpolarisation by valinomycin and its limitations for bacterial viability assessment using rhodamine 123 and flow cytometry. FEMS Microbiol. Lett. 132: 259-262. https://doi.org/10.1111/j.1574-6968.1995.tb07843.x
- Williams S, Hong Y, Danavall D, Howard-Jones M, Gibson D, Frischer M, et al. 1998. Distinguishing between living and nonliving bacteria: evaluation of the vital stain propidium iodide and its combined use with molecular probes in aquatic samples. J. Microbiol. Methods 32: 225-236. https://doi.org/10.1016/S0167-7012(98)00014-1
- Boulos L, Prevost M, Barbeau B, Coallier J, Desjardins R. 1999. LIVE/DEAD BacLight: application of a new rapid staining method for direct enumeration of viable and total bacteria in drinking water. J. Microbiol. Methods 37: 77-86. https://doi.org/10.1016/S0167-7012(99)00048-2
- Nescerecka A, Hammes F, Juhna T. 2016. A pipeline for developing and testing staining protocols for flow cytometry, demonstrated with SYBR Green I and propidium iodide viability staining. J. Microbiol. Methods 131: 172-180. https://doi.org/10.1016/j.mimet.2016.10.022
- Bunthof CJ, van Schalkwijk S, Meijer W, Abee T, Hugenholtz J. 2001. Fluorescent method for monitoring cheese starter permeabilization and lysis. Appl. Environ. Microbiol. 67: 4264-4271. https://doi.org/10.1128/AEM.67.9.4264-4271.2001
-
Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A. 2011. Engineered ZnO and
$TiO_2$ nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic. Biol. Med. 51: 1872-1881. https://doi.org/10.1016/j.freeradbiomed.2011.08.025 - Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. 2011. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333: 345-348. https://doi.org/10.1126/science.1204763
- Matsuyama T. 1984. Staining of living bacteria with rhodamine 123. FEMS Microbiol. Lett. 21: 153-157. https://doi.org/10.1111/j.1574-6968.1984.tb00202.x
- Monfort P, Baleux B. 1996. Cell cycle characteristics and changes in membrane potential during growth of Escherichia coli as determined by a cyanine fluorescent dye and flow cytometry. J. Microbiol. Methods 25: 79-86. https://doi.org/10.1016/0167-7012(95)00089-5
- Comas J, Vives-Rego J. 1997. Assessment of the effects of gramicidin, formaldehyde, and surfactants on Escherichia coli by flow cytometry using nucleic acid and membrane potential dyes. Cytometry 29: 58-64. https://doi.org/10.1002/(SICI)1097-0320(19970901)29:1<58::AID-CYTO6>3.0.CO;2-9
- Jiao N, Yang Y, Luo T. 2004. Membrane potential based characterization by flow cytometry of physiological states in an aerobic anoxygenic phototrophic bacterium. Aquat. Microb. Ecol. 37: 149-158. https://doi.org/10.3354/ame037149
- Rezaeinejad S, Ivanov V. 2011. Heterogeneity of Escherichia coli population by respiratory activity and membrane potential of cells during growth and long-term starvation. Microbiol. Res. 166: 129-135. https://doi.org/10.1016/j.micres.2010.01.007
- Gao W, Leung K, Hawdon N. 2009. Freezing inactivation of Escherichia coli and Enterococcus faecalis in water: response of different strains. Water Environ. Res. 81: 824-830. https://doi.org/10.2175/106143009X407348
- Sherr B, Sherr E, del Giorgio P. 2001. Enumeration of total and highly active bacteria. Methods Microbiol. 30: 129-159.
- Muthukrishnan T, Govender A, Dobretsov S, Abed RM. 2017. Evaluating the reliability of counting bacteria using epifluorescence microscopy. J. Mar. Sci. Eng. 5: 4. https://doi.org/10.3390/jmse5010004
- Silva F, Lourenço O, Queiroz JA, Domingues FC. 2011. Bacteriostatic versus bactericidal activity of ciprofloxacin in Escherichia coli assessed by flow cytometry using a novel farred dye. J. Antibiot. (Tokyo) 64: 321-325. https://doi.org/10.1038/ja.2011.5
- Xu C, Li J, Yang L, Shi F, Yang L, Ye M. 2017. Antibacterial activity and a membrane damage mechanism of Lachnum YM30 melanin against Vibrio parahaemolyticus and Staphylococcus aureus. Food Control 73: 1445-1451. https://doi.org/10.1016/j.foodcont.2016.10.048
- Ma J, Kang M, Zhang Y, Guo X, Tian Z, Ding C, et al. 2017. Self-defense of Escherichia coli against damages caused by nanoalumina. Environ. Toxicol. Pharmacol. 55: 110-117. https://doi.org/10.1016/j.etap.2017.08.011
- Biggerstaff J, Le Puil M, Weidow B, Prater J, Glass K, Radosevich M, et al. 2006. New methodology for viability testing in environmental samples. Mol. Cell. Probes 20: 141-146. https://doi.org/10.1016/j.mcp.2005.11.006
- Breeuwer P, Abee T. 2004. Assessment of the membrane potential, intracellular pH and respiration of bacteria employing fluorescence techniques, pp. 1563-1580. In Kowalchuk GA, de Bruijn F, Head IM, Van der Zijpp AJ, van Elsas JD (eds.), Molecular Microbial Ecology Manual. Springer. Berlin.
- Sekyere JO, Amoako DG. 2017. Carbonyl cyanide mchlorophenylhydrazine (CCCP) reverses resistance to colistin, but not to carbapenems and tigecycline in multidrugresistant Enterobacteriaceae. Front. Microbiol. 8: 228.
- Chimerel C, Field CM, Pinero-Fernandez S, Keyser UF, Summers DK. 2012. Indole prevents Escherichia coli cell division by modulating membrane potential. Biochim. Biophys. Acta 1818: 1590-1594. https://doi.org/10.1016/j.bbamem.2012.02.022
- Kennedy D , Cronin UP, Wilkinson MG. 2011. Responses of Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus to simulated food processing treatments, determined using fluorescence-activated cell sorting and plate counting. Appl. Environ. Microbiol. 77: 4657-4668. https://doi.org/10.1128/AEM.00323-11
- Guo N , Zang Y-P, Cui Q, Gai Q -Y, Jiao J, Wang W, et al. 2017. The preservative potential of Amomum tsaoko essential oil against E. coli, its antibacterial property and mode of action. Food Control 75: 236-245. https://doi.org/10.1016/j.foodcont.2016.12.013
- Novo D, Perlmutter NG, Hunt RH, Shapiro HM. 1999. Accurate flow cytometric membrane potential measurement in bacteria using diethyloxacarbocyanine and a ratiometric technique. Cytometry A 35: 55-63. https://doi.org/10.1002/(SICI)1097-0320(19990101)35:1<55::AID-CYTO8>3.0.CO;2-2
- Berney M, Hammes F, Bosshard F, Weilenmann HU, Egli T. 2007. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLight Kit in combination with flow cytometry. Appl. Environ. Microbiol. 73: 3283-3290. https://doi.org/10.1128/AEM.02750-06
- Miyanaga K, Takano S, Morono Y, Hori K, Unno H, Tanji Y. 2007. Optimization of distinction between viable and dead cells by fluorescent staining method and its application to bacterial consortia. Biochem. Eng. J. 37: 56-61. https://doi.org/10.1016/j.bej.2007.03.007
- Lopez-Amoros R, Comas J, Vives-Rego J. 1995. Flow cytometric assessment of Escherichia coli and Salmonella typhimurium starvation-survival in seawater using rhodamine 123, propidium iodide, and oxonol. Appl. Environ. Microbiol. 61: 2521-2526.
피인용 문헌
- Electrically induced bacterial membrane-potential dynamics correspond to cellular proliferation capacity vol.116, pp.19, 2018, https://doi.org/10.1073/pnas.1901788116
- Assessment of fish freshness based on fluorescence measurement of mitochondrial membrane potential vol.115, pp.None, 2018, https://doi.org/10.1016/j.foodcont.2020.107301
- Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism vol.147, pp.None, 2021, https://doi.org/10.1016/j.lwt.2021.111574
- Measurement of fish freshness: Flow cytometry analysis of isolated muscle mitochondria vol.373, pp.no.pb, 2018, https://doi.org/10.1016/j.foodchem.2021.131690