FINITE p-GROUPS IN WHICH THE NORMALIZER OF EVERY NON-NORMAL SUBGROUP IS CONTAINED IN ITS NORMAL CLOSURE

Pengfei Bai, Xiuyun Guo, and Junxin Wang

Abstract

In this paper, finite p-groups G satisfying $N_{G}(H) \leq H^{G}$ for every non-normal subgroup H of G are completely classified. This solves a problem proposed by Y. Berkovich.

1. Introduction

All groups considered in this paper are finite. It is well-known that the normality of subgroups plays an important role in the research of group theory. But not every subgroup is normal. If H is a non-normal subgroup of a p-group G, then we have

$$
H<N_{G}(H)<G \text { and } H<H^{G}<G
$$

It is a way to measure the degree of the normality of H by using $N_{G}(H)$ or H^{G}. Many authors have developed their work in this line. For example, Lv, Zhou and Yu in [4] studied the p-group G with $\left|\langle a\rangle^{G}:\langle a\rangle\right| \leq p^{m}$ for every cyclic subgroup $\langle a\rangle$ of G, and Zhang and Guo in [7] investigated the p-groups whose non-normal cyclic subgroups have small index in their normalizers, and Zhao and Guo in [8] determined the p-groups in which the normal closures of the non-normal cyclic subgroups have small index. Y. Berkovich has proposed the following problem:

Problem 1.1 ([1, Problem 439]). Study the p-groups G such that, whenever H is a non-normal subgroup of G, then $N_{G}(H) \leq H^{G}$.

This problem connects normalizers with normal closures, and the condition $N_{G}(H) \leq H^{G}$ indicates that H has low degree of normality in some sense.

[^0]In the following, we will classify the p-groups in Problem 1.1 completely. For convenience, such groups are called \mathcal{P}-groups. The main results are:
Theorem 1.2. A 2-group G is a \mathcal{P}-group if and only if G is of one of the following types:
(1) a Dedekind 2-group;
(2) a maximal class 2-group;
(3) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{-2}\right\rangle$, where $n \geq 2$;
(4) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{2^{n-1}-2}\right\rangle$, where $n \geq 3$.

Moreover, except for Q_{8} (Q_{8} is of type (1) and type (2)), groups of different types, or of same type but with different values of parameters, are not isomorphic.
Theorem 1.3. Let p be an odd prime. Then a p-group G is a \mathcal{P}-group if and only if G is of one of the following types:
(1) an abelian p-group;
(2) $M_{p}(2,1)$;
(3) $M_{p}(1,1,1)$;
(4) $M_{p}(2,2)$.

The meanings of $M_{p}(2,1), M_{p}(1,1,1)$ and $M_{p}(2,2)$ see Lemma 2.2.

2. Preliminaries

In this section, we first recall some basic concepts and notations, and then give some basic results which are useful in the sequel.

We use $D_{2^{n}}, Q_{2^{n}}, S D_{2^{n}}, C_{p^{n}}$ and C_{p}^{n} to denote the dihedral group of order 2^{n}, the generalized quaternion group of order 2^{n}, the semi-dihedral group of order 2^{n}, the cyclic group of order p^{n} and the elementary abelian group of order p^{n}, respectively. We use $A * B, A \times B$ and $A-B$ to denote the central product, the direct product and the set $\{x \mid x \in A$, but $x \notin B\}$ of a group A and a group B. We also use $d(G)$ and $c(G)$ to denote the minimal number of generators of a group G and the nilpotent class of G. If G is a p-group, then $\Omega_{\{i\}}(G)=\left\{g \in G \mid g^{p^{i}}=1\right\}, \mho_{\{i\}}(G)=\left\{g^{p^{i}} \mid g \in G\right\}, \Omega_{i}(G)=\left\langle\Omega_{\{i\}}(G)\right\rangle$ and $\mho_{i}(G)=\left\langle\mho_{\{i\}}(G)\right\rangle$, respectively. All other terminology and notation not mentioned here are standard.

Definition 2.1 ([1, §1, Definition 2]). A group G of order p^{m} is said to be of maximal class if $m>2$ and $c(G)=m-1$.
Lemma 2.2 ([5]). Let G be a minimal non-abelian p-group. Then G is isomorphic to one of the following groups:
(1) $Q_{8}=\left\langle a, b \mid a^{4}=1, b^{2}=a^{2}, a^{b}=a^{-1}\right\rangle$;
(2) $M_{p}(n, m)=\left\langle a, b \mid a^{p^{n}}=b^{p^{m}}=1, a^{b}=a^{1+p^{n-1}}\right\rangle$, where $n \geq 2, m \geq 1$;
(3) $M_{p}(n, m, 1)=\left\langle a, b \mid a^{p^{n}}=b^{p^{m}}=c^{p}=1,[a, b]=c,[c, a]=[c, b]=1\right\rangle$, where $n \geq m \geq 1$, and if $p=2$, then $m+n \geq 3$.
Lemma 2.3 ([1, §1, Lemma 1.4]). Let G be a p-group and $N \unlhd G$. If N has no abelian G-invariant subgroups of type (p, p), then N is either cyclic or
isomorphic to one of the groups $D_{2^{n}}, Q_{2^{n}}$ and $S D_{2^{n}}$. If, in addition, $N \leq$ $\Phi(G)$, then N is cyclic. In particular, if G has no abelian normal subgroups of type (p, p), then G is either cyclic or isomorphic to one of the groups $D_{2^{n}}$, $Q_{2^{n}}$ and $S D_{2^{n}}$.

Lemma 2.4 ([2, Satz.III, Theorem 11.9]).
(1) If G is a non-abelian 2-group such that $G / G^{\prime} \cong C_{2}^{2}$, then G is one of the groups $D_{2^{n}}, Q_{2^{n}}$ and $S D_{2^{n}}$.
(2) If G is a 2-group of maximal class, then G is one of the groups $D_{2^{n}}, Q_{2^{n}}$ and $S D_{2^{n}}$.
(3) A 2-group G is of maximal class if and only if G is a non-abelian 2-group with $G / G^{\prime} \cong C_{2}^{2}$.

Lemma 2.5. Let G be a nontrivial 2-group. If G is not of maximal class, then there exists a nontrivial subgroup $N \leq Z(G)$ such that G / N is not of maximal class.

Proof. If G is abelian, then the lemma is clear. Now assume that G is nonabelian. Then $G / G^{\prime} \not \equiv C_{2}^{2}$ by Lemma 2.4, and there exists a nontrivial subgroup N of G such that $N \leq G^{\prime} \cap Z(G)$. Since $(G / N) /\left(G^{\prime} / N\right) \cong G / G^{\prime}$, it follows from Lemma 2.4 once more that G / N is not of maximal class.

Lemma 2.6. Let N be a normal subgroup of a \mathcal{P}-group G. Then G / N is also a \mathcal{P}-group.

Proof. For any subgroup H / N of G / N, if $H / N \nsubseteq G / N$, then $H \not \ddagger G$ and so $N_{G}(H) \leq H^{G}$. Noticing that

$$
N_{G / N}(H / N)=N_{G}(H) / N \leq H^{G} / N=(H / N)^{G / N}
$$

we see G / N is also a \mathcal{P}-group.
Lemma 2.7. Let G be a non-Dedekind p-group. If $d(G) \geq 3$ and $\left|G^{\prime}\right|=p$, then G is a non-P-group.

Proof. Since G is not a Dedekind group, there exist elements $a, b \in G$ such that $\langle b\rangle \nexists G$ and $[a, b] \neq 1$. Now write $A=\langle a, b\rangle$. Then it follows from $\left|G^{\prime}\right|=p$ that $A^{\prime}=G^{\prime}$ and $A \unlhd G$. By [6, Lemma 2.2], A is a minimal non-abelian group and so $G=A * C_{G}(A)$ by [1, $\S 4$, Lemma 4.2]. Clearly $C_{G}(A) \leq N_{G}(\langle b\rangle)$ and $\langle b\rangle^{G} \leq A$. If $C_{G}(A) \leq\langle b\rangle^{G}$, then $G=A$, in contradiction to the condition $d(G) \geq 3$. Therefore G is a non- \mathcal{P}-group.

Lemma 2.8. Suppose that a, b and x are elements of a 2-group G, where $x \in Z(G)$ and $o(x)=2$.
(1) If $[b, a]=b^{-2} x^{i}$ with $i=0$ or 1 , then $\left[b, a^{2}\right]=1$;
(2) If $b^{2^{n+1}}=1$, and $[b, a]=b^{2^{n-1}-2} x^{j}$, where $n \geq 3$ and $j=0$ or 1 , then $\left[b, a^{2}\right]=b^{2^{n}}$.

Proof. (1) From $[b, a]=b^{-2} x^{i}$, we get $b^{a}=b^{-1} x^{i}$. So $b^{a^{2}}=\left(b^{-1} x^{i}\right)^{a}=$ $\left(b^{-1} x^{i}\right)^{-1} x^{i}=b$.
(2) Clearly, we have $b^{a}=b^{2^{n-1}-1} x^{j}$, and it follows that

$$
b^{a^{2}}=\left(b^{2^{n-1}-1} x^{j}\right)^{a}=\left(b^{2^{n-1}-1} x^{j}\right)^{2^{n-1}-1} x^{j}=b^{\left(2^{n-1}-1\right)^{2}}=b^{-2^{n}+1}=b^{2^{n}} b .
$$

Hence $\left[b, a^{2}\right]=b^{2^{n}}$.

3. The classification of \mathcal{P}-groups

In this section, we first give some properties of \mathcal{P}-groups, and then classify \mathcal{P}-groups.

Lemma 3.1. Let G be a minimal non-abelian p-group. Then G is a \mathcal{P}-group if and only if $|G|=p^{3}$ or $G \cong M_{p}(2,2)$.

Proof." \Leftarrow " If $|G|=p^{3}$, then $|H|=p$ for any non-normal subgroup H of G and so $N_{G}(H) \unlhd G$, which indicates that $H^{G}=N_{G}(H)$. If $G \cong M_{p}(2,2)$, then $\Omega_{1}(G)=Z(G)$ and so $|H|=p^{2}$ for any non-normal subgroup H of G. Similarly, we have $N_{G}(H)=H^{G}$. Hence the sufficiency holds.
$" \Rightarrow$ " Let G be a \mathcal{P}-group and suppose that $|G|>p^{3}$. By Lemma 2.2, G is one of the following groups:
(a) $G=\left\langle a, b \mid a^{p^{n}}=b^{p^{m}}=1,[a, b]=a^{p^{n-1}}\right\rangle$, where $n+m \geq 4$ and $n \geq 2, m \geq 1 ;$
(b) $G=\left\langle a, b \mid a^{p^{n}}=b^{p^{m}}=c^{p}=1,[a, b]=c,[c, a]=[c, b]=1\right\rangle$, where $n+m \geq 3$ and $n \geq m \geq 1$.
Assume G is type (a). If $n=2$ and $m>2$, then $\left\langle a b^{p}\right\rangle \not \Perp G$ and $\left\langle a b^{p}\right\rangle^{G}=$ $\left\langle a b^{p}, a^{p}\right\rangle$. Clearly $a \in N_{G}\left(\left\langle a b^{p}\right\rangle\right)$ but $a \notin\left\langle a b^{p}\right\rangle^{G}$, so G is not a \mathcal{P}-group. If $n \geq 3$, then $\langle b\rangle^{G}=\left\langle b, a^{p^{n-1}}\right\rangle$. Since $a^{p} \in N_{G}(\langle b\rangle)$ and $a^{p} \notin\langle b\rangle^{G}$, we see G is not a \mathcal{P}-group. Therefore $G \cong M_{p}(2,2)$. Now assume G is type (b). Then $\langle b\rangle^{G}=\langle b, c\rangle$. Noticing that $a^{p} \in N_{G}(\langle b\rangle)$ and $a^{p} \notin\langle b\rangle^{G}$, hence G is not a \mathcal{P}-group. The proof is complete.

Lemma 3.2. Let G be a 2-group of maximal class. Then G is a \mathcal{P}-group.
Proof. Assume the lemma is false and let G be a counterexample of minimal order. Then G has a non-normal subgroup H such that $N_{G}(H) \not \pm H^{G}$ and by Lemma 3.1, we see $|G| \geq 2^{4}$. Now write $\bar{G}=G / Z(G)$. Then \bar{G} is also a 2 -group of maximal class, and so \bar{G} is a \mathcal{P}-group.

If $\bar{H} \nsupseteq \bar{G}$, then $N_{\bar{G}}(\bar{H}) \leq \bar{H}^{\bar{G}}=H^{G} / Z(G)$ and it follows that $N_{G}(H) \leq$ H^{G}, a contradiction. Now assume $\bar{H} \unlhd \bar{G}$. Then $H^{G}=H Z(G) \neq H$ and $\left|H^{G}: H\right|=2$. In this case, if $|G: H|=4$, then $N_{G}(H)=H^{G}$, a contradiction. If $|G: H|>4$, then $\left|G: H^{G}\right| \geq 4$ and thus $H^{G} \leq G^{\prime}$. By Lemma 2.4, G^{\prime} is cyclic and so H char G^{\prime}, which implies $H \unlhd G$, the final contradiction.

Lemma 3.3. Let G be a p-group of order at least p^{5}. If there exists a normal subgroup N of order p such that G / N is a Dedekind group, then G is either a non- \mathcal{P}-group or a Dedekind group.
Proof. Assume G is not a Dedekind group. In the following, we will prove that G is a non- \mathcal{P}-group. Write $\bar{G}=G / N$. Then \bar{G} is either abelian or isomorphic to $Q_{8} \times C$, where C is an elementary abelian 2-group. Hence $\left|G^{\prime}\right|=p$ or 4 .

Firstly, assume $\left|G^{\prime}\right|=p$. If $d(G)=2$, then G is a non- \mathcal{P}-group by [6 , Lemma 2.2] and Lemma 3.1. If $d(G) \geq 3$, then G is also a non- \mathcal{P}-group by Lemma 2.7. Now assume $\left|G^{\prime}\right|=4$. Then $\bar{G} \cong Q_{8} \times C$ and thus $\exp (G)=8$ or 4 . If $\exp (G)=8$, then there exist elements $x, y \in G$ such that $o(x)=8$ and $\left\langle\bar{x}, \bar{y} \mid \bar{x}^{4}=1, \bar{y}^{2}=\bar{x}^{2},[\bar{x}, \bar{y}]=\bar{x}^{2}\right\rangle \cong Q_{8}$. Let $N=\langle z\rangle$. From $\bar{y}^{2}=\bar{x}^{2}$, we get $x^{2}=y^{2} z^{k}$, where $k=0$ or 1 , and therefore $\left[x^{2}, y\right]=1$. On the other hand, by $[\bar{x}, \bar{y}]=\bar{x}^{2}$, we have $[x, y]=x^{2} z^{i}$ with $i=0$ or 1 , and it follows that $\left[x^{2}, y\right]=[x, y]^{x}[x, y]=[x, y]^{2}=x^{4}$, a contradiction. Hence $\exp (G)=4$. Since G is non-Dedekind and \bar{G} is Dedekind, there exists an element $u \in G$ such that $\langle u\rangle \nexists G,\langle u\rangle^{G}=\langle u\rangle \times N$ and thus $\left|\langle u\rangle^{G}\right| \mid 8$. Let C be the conjugacy class of u. Noticing that $u^{g}=u[u, g] \in u G^{\prime}$ with $g \in G$, we see $|C| \leq\left|u G^{\prime}\right| \leq 4$ and thus $\left|G: C_{G}(u)\right|=|C| \mid 4$. If $N_{G}(\langle u\rangle) \leq\langle u\rangle^{G}$, then since $|G| \geq 2^{5}$, it is easy to see that $|G|=2^{5}, o(u)=4$ and $N_{G}(\langle u\rangle)=C_{G}(u)=\langle u\rangle^{G}$. Hence, for any $h \in G, u^{h} \neq u^{3}$ and so $|C| \leq 2$ as $C \subseteq\langle u\rangle^{G}$, which implies $|G| \leq 2^{4}$, a contradiction. Therefore G is a non- \mathcal{P}-group. The proof is complete.

Lemma 3.4. Let G be a non-abelian p-group of order p^{4}. Then G is a \mathcal{P}-group if and only if G is isomorphic to one of the following groups:
(1) Maximal class 2 -groups of order p^{4};
(2) $Q_{8} \times C_{2}$;
(3) $M_{p}(2,2)$.

Proof. By Lemma 3.1 and Lemma 3.2, the sufficiency holds. We now prove the necessity. Since G is non-abelian of order p^{4}, we have $\left|G^{\prime}\right|=p$ or p^{2}.

Assume $\left|G^{\prime}\right|=p$. If $d(G)=2$, then G is a minimal non-abelian p-group by [6, Lemma 2.2] and it follows from Lemma 3.1 that $G \cong M_{p}(2,2)$. If $d(G) \geq 3$, then G is a Dedekind p-group by Lemma 2.7 and therefore $G \cong Q_{8} \times C_{2}$. Now assume $\left|G^{\prime}\right|=p^{2}$. From $G / C_{G}\left(G^{\prime}\right) \lesssim \operatorname{Aut}\left(G^{\prime}\right)$, we get that G has an abelian maximal subgroup A, and so G is a p-group of maximal class by $[1, \S 1$, Exercise 4]. Hence for $i=1,2, G$ has unique normal subgroup of order p^{i}. If $p=2$, then G is a 2-group of maximal class. If $p>2$, then $G^{\prime} \cong C_{p}^{2}$ by Lemma 2.3, and therefore G^{\prime} has a subgroup H such that $|H|=p$ and $H \not \geqq G$. Thus H^{G} $=G^{\prime}$. Noticing that $A \leq N_{G}(H)$, we see $N_{G}(H) \not \leq H^{G}$. This show that G is not a \mathcal{P}-group. The proof is complete.

Lemma 3.5. If G is a group of one of the following types, then G is a \mathcal{P}-group.
(1) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{-2}\right\rangle$, where $n \geq 2$;
(2) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{2^{n-1}-2}\right\rangle$, where $n \geq 3$.

Moreover, groups of different types, or of same type but with different values of parameters, are not isomorphic.

Proof. Let $G_{i}=\left\langle a_{i}, b_{i}\right\rangle$ be a group of type (i) with $i \in\{1,2\}$. Then
(1) $G_{1}=\left\langle a_{1}, b_{1} \mid a_{1}^{2^{2}}=b_{1}^{2^{n}}=1,\left[b_{1}, a_{1}\right]=b_{1}^{-2}\right\rangle$, where $n \geq 2$;
(2) $G_{2}=\left\langle a_{2}, b_{2} \mid a_{2}^{2^{2}}=b_{2}^{2^{n}}=1,\left[b_{2}, a_{2}\right]=b_{2}^{2^{n-1}-2}\right\rangle$, where $n \geq 3$.

Clearly, $C_{\left\langle a_{i}\right\rangle}\left(b_{i}\right)=\left\langle a_{i}^{2}\right\rangle, C_{\left\langle b_{i}\right\rangle}\left(a_{i}\right)=\left\langle b_{i}^{2^{n-1}}\right\rangle$. If $a_{i}^{k} b_{i}^{j} \in Z\left(G_{i}\right)$, then $1=$ $\left[a_{i}^{k} b_{i}^{j}, b_{i}\right]=\left[a_{i}^{k}, b_{i}\right]$, and so $a_{i}^{k} \in\left\langle a_{i}^{2}\right\rangle$. Similarly we have $b_{i}^{j} \in\left\langle b_{i}^{2^{n-1}}\right\rangle$. This shows that $Z\left(G_{i}\right)=\left\langle a_{i}^{2}\right\rangle \times\left\langle b_{i}^{2^{n-1}}\right\rangle$, and for any integers s, t, it follows that

$$
\begin{aligned}
& \left(a_{i}^{2 s} b_{i}^{t}\right)^{2}=b_{i}^{2 t} \\
& \left(a_{1}^{2 s+1} b_{1}^{t}\right)^{2}=\left(a_{1} b_{1}^{t}\right)^{2}=a_{1}^{2}\left(b_{1}^{a_{1}}\right)^{t} b_{1}^{t}=a_{1}^{2} \\
& \left(a_{2}^{2 s+1} b_{2}^{t}\right)^{2}=\left(a_{2} b_{2}^{t}\right)^{2}=a_{2}^{2}\left(b_{2}^{a_{2}}\right)^{t} b_{2}^{t}=a_{2}^{2} b_{2}^{t 2^{n-1}}
\end{aligned}
$$

Hence

$$
Z\left(G_{i}\right)=\left\langle a_{i}^{2}\right\rangle \times\left\langle b_{i}^{2^{n-1}}\right\rangle=\Omega_{1}\left(G_{i}\right)
$$

In addition, we have $G_{i}^{\prime}=\left\langle b_{i}^{2}\right\rangle$, and then

$$
\left|G_{i} /\left\langle a_{i}^{2}\right\rangle:\left(G_{i} /\left\langle a_{i}^{2}\right\rangle\right)^{\prime}\right|=\left|G_{i} /\left\langle a_{i}^{2} b_{i}^{2^{n-1}}\right\rangle:\left(G_{i} /\left\langle a_{i}^{2} b_{i}^{2^{n-1}}\right\rangle\right)^{\prime}\right|=4
$$

By Lemma 2.4, $G_{i} /\left\langle a_{i}^{2}\right\rangle$ and $G_{i} /\left\langle a_{i}^{2} b_{i}^{2^{n-1}}\right\rangle$ are all 2-groups of maximal class, and therefore $G_{i} /\left\langle a_{i}^{2}\right\rangle$ and $G_{i} /\left\langle a_{i}^{2} b_{i}^{2^{n-1}}\right\rangle$ are all \mathcal{P}-groups by Lemma 3.2. For convenience, write $\overline{G_{i}}=G_{i} /\left\langle b_{i}^{2^{n-1}}\right\rangle$ in the following.

Firstly, we prove that G_{1} is a \mathcal{P}-group. Suppose that G_{1} is a counterexample of minimal order. Then $n \geq 3$ by Lemma 3.1. Noticing that $\overline{G_{1}}$ has the same type as G_{1}, we see that $\overline{G_{1}}$ is a \mathcal{P}-group. Thus for any subgroup M of order $2, G_{1} / M$ is a \mathcal{P}-group. Let H be any non-normal subgroup of G. Choose a subgroup N of H of order 2 . Then $H / N \nsubseteq G_{1} / N$ and so $N_{G_{1} / N}(H / N) \leq$ $(H / N)^{G_{1} / N}$. Therefore $N_{G_{1}}(H) \leq H^{G_{1}}$, a contradiction.

Next, we prove G_{2} is a \mathcal{P}-group. Since $\overline{G_{2}}=\left\langle\overline{a_{2}}, \overline{b_{2}}\right|{\overline{a_{2}}}^{2}={\overline{b_{2}}}^{2^{n-1}}=$ $\left.\overline{1},\left[\overline{b_{2}}, \overline{a_{2}}\right]={\overline{b_{2}}}^{-2}\right\rangle$ is of the same type as $G_{1}, \overline{G_{2}}$ is a \mathcal{P}-group. Thus G_{2} / L is a \mathcal{P}-group for any subgroup L of order 2. If $H \nsubseteq G_{2}$, then $N_{G_{2}}(H) \leq H^{G_{2}}$ by the same way as above and G_{2} is a \mathcal{P}-group.

Clearly, $\mho_{\{1\}}\left(G_{1}\right)=\left\{a_{1}^{2}, b_{1}^{2 e}\right\}$ and $\mho_{\{1\}}\left(G_{2}\right)=\left\{a_{2}^{2} b_{2}^{l 2^{n-1}}, b_{2}^{2 f}\right\}$, where $0 \leq l \leq$ $1,0 \leq e \leq 2^{n-1}-1$ and $0 \leq f \leq 2^{n-1}-1$. Therefore groups of different types, or of same type but with different values of parameters, are not isomorphic. The proof is complete.

Lemma 3.6. Let G be a \mathcal{P}-group. If there exists a subgroup $N \leq Z(G)$ such that $|N|=2$ and $G / N \cong\left\langle a, b \mid a^{2^{2}}=b^{2^{n-1}}=1,[b, a]=b^{-2}\right\rangle$ with $n \geq 3$, then G is isomorphic to one of the following groups:
(1) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{-2}\right\rangle$, where $n \geq 3$;
(2) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{2^{n-1}-2}\right\rangle$, where $n \geq 3$.

Proof. Suppose that $N=\langle x\rangle$ and let $G / N=\langle\bar{a}, \bar{b}| \bar{a}^{2^{2}}=\bar{b}^{2^{n-1}}=1,[\bar{b}, \bar{a}]=$ $\left.\bar{b}^{-2}\right\rangle$ with $n \geq 3$. Then there exist integers $i, j, k \in\{0,1\}$ such that

$$
G=\left\langle a, b, x \mid a^{2^{2}}=x^{i}, b^{2^{n-1}}=x^{j}, x^{2}=1,[b, a]=b^{-2} x^{k},[x, a]=[x, b]=1\right\rangle .
$$

By Lemma 2.8, $\left[b, a^{2}\right]=1$. If $a^{2^{2}}=x, b^{2^{n-1}}=x^{j},[b, a]=b^{-2} x$, then, replacing b with $a^{2} b$, we get $a^{2^{2}}=x, b^{2^{n-1}}=x^{j},[b, a]=b^{-2}$. Hence, G is one of the following groups:
(a) $\left\langle a, b \mid a^{2^{3}}=1, b^{2^{n-1}}=a^{2^{2}},[b, a]=b^{-2}\right\rangle$, which is isomorphic to $\langle a, b|$ $\left.a^{2^{3}}=1, b^{2^{n-1}}=a^{2^{2}},[b, a]=b^{2^{n-1}-2}\right\rangle ;$
(b) $\left\langle a, b \mid a^{2^{3}}=b^{2^{n-1}}=1,[b, a]=b^{-2}\right\rangle$, which is isomorphic to $\langle a, b| a^{2^{3}}=$ $\left.1, b^{2^{n-1}}=1,[b, a]=a^{4} b^{-2},\left[a^{4}, b\right]=1\right\rangle ;$
(c) $\left\langle a, b, x \mid a^{2^{2}}=b^{2^{n-1}}=x^{2}=1,[b, a]=b^{-2} x,[x, a]=[x, b]=1\right\rangle$;
(d) $\left\langle a, b, x \mid a^{2^{2}}=b^{2^{n-1}}=x^{2}=1,[b, a]=b^{-2},[x, a]=[x, b]=1\right\rangle$;
(e) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{-2}\right\rangle$;
(f) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{2^{n-1}-2}\right\rangle$.

We will prove the groups (a), (b), (c) and (d) all are not \mathcal{P}-groups. In fact, if G is (a), then $\left\langle a^{2} b^{2^{n-2}}\right\rangle \notin G,\left\langle a^{2} b^{2^{n-2}}\right\rangle^{G}=\left\langle a^{2} b^{2^{n-2}}, a^{4}\right\rangle$ and $b \in$ $N_{G}\left(\left\langle a^{2} b^{2^{n-2}}\right\rangle\right)-\left\langle a^{2} b^{2^{n-2}}\right\rangle^{G}$; if G is (b), then $\left\langle a^{2} b\right\rangle \notin G,\left\langle a^{2} b\right\rangle^{G}=\left\langle a^{2} b, a^{4}\right\rangle$ and $a^{2} \in N_{G}\left(\left\langle a^{2} b\right\rangle\right)-\left\langle a^{2} b\right\rangle^{G}$; if G is (c), then $\langle a\rangle \nexists G,\langle a\rangle^{G}=\left\langle a, b^{2} x\right\rangle$ and $x \in$ $N_{G}(\langle a\rangle)-\langle a\rangle^{G}$; if G is (d), then $\langle a\rangle \nsubseteq G,\langle a\rangle^{G}=\left\langle a, b^{2}\right\rangle$ and $x \in N_{G}(\langle a\rangle)-\langle a\rangle^{G}$. Hence, G can only be (e) or (f). The proof is complete.
Lemma 3.7. Let G be a \mathcal{P}-group of order $2^{n+3} \geq 2^{6}$. Then for any subgroup $N \leq Z(G)$ with $|N|=2, G / N \neq\left\langle a, b \mid a^{2^{2}}=b^{2^{n}}=1,[b, a]=b^{2^{n-1}-2}\right\rangle$.

Proof. Assume the conclusion is false. Then G has a normal subgroup $\langle x\rangle$ of order 2 such that $G /\langle x\rangle=\left\langle\bar{a}, \bar{b} \mid \bar{a}^{2^{2}}=\bar{b}^{2^{n}}=1,[\bar{b}, \bar{a}]=\bar{b}^{2^{n-1}-2}\right\rangle$ with $n \geq 3$. From which we see that there exist integers $i, j, k \in\{0,1\}$ such that
(*) $\quad G=\left\langle a, b, x \mid a^{2^{2}}=x^{i}, b^{2^{n}}=x^{j}, x^{2}=1,[b, a]=b^{2^{n-1}-2} x^{k},[x, a]=[x, b]=1\right\rangle$.
By Lemma 2.8, we have $\left[b, a^{2}\right]=b^{2^{n}}$, and then

$$
b^{a^{2}}=b^{2^{n}+1},\left[b^{2}, a^{2}\right]=1, b^{a^{3}}=b^{2^{n-1}-1} b^{2^{n}} x^{k}
$$

Also $(a b)^{2}=a^{2}\left(a^{-1} b a\right) b=a^{2}\left(b^{2^{n-1}-1} x^{k}\right) b=a^{2} b^{2^{n-1}} x^{k}$.
If $a^{2^{2}}=x, b^{2^{n}}=x,[b, a]=b^{2^{n-1}-2} x^{k}$, then, replacing a with $a b$, we get $a^{2^{2}}=1, b^{2^{n}}=x,[b, a]=b^{2^{n-1}-2} x^{k}$. If $a^{2^{2}}=1, b^{2^{n}}=x,[b, a]=b^{2^{n-1}-2} x$, then replacing a with a^{-1}, we get $a^{2^{2}}=1, b^{2^{n}}=x,[b, a]=b^{2^{n-1}-2}$. The argument shows that groups with relations expressed in $(*)$ are isomorphic to each other whenever $j=1$. On the other hand, if $a^{2^{2}}=x, b^{2^{n}}=1,[b, a]=b^{2^{n-1}-2} x$, then $\left[b, a^{2}\right]=1$, and by replacing b with $a^{2} b$, we get $a^{2^{2}}=x, b^{2^{n}}=1,[b, a]=b^{2^{n-1}-2}$. This indicates that the group in ($*$) with $i=1, j=0, k=1$ is isomorphic to
the group in $(*)$ with $i=1, j=0, k=0$. Hence, G is one of the following groups:
(a) $\left\langle a, b \mid a^{2^{2}}=b^{2^{n+1}}=1,[b, a]=b^{2^{n-1}-2}\right\rangle$;
(b) $\left\langle a, b \mid a^{2^{3}}=b^{2^{n}}=1,[b, a]=b^{2^{n-1}-2}\right\rangle$;
(c) $\left\langle a, b, x \mid a^{2^{2}}=b^{2^{n}}=x^{2}=1,[b, a]=b^{2^{n-1}-2} x,[x, a]=[x, b]=1\right\rangle$;
(d) $\left\langle a, b, x \mid a^{2^{2}}=b^{2^{n}}=x^{2}=1,[b, a]=b^{2^{n-1}-2},[x, a]=[x, b]=1\right\rangle$.

It is easy to check that all above listed groups are not \mathcal{P}-groups. In fact, if G is (a), then $\left\langle a^{2}\right\rangle \nexists G,\left\langle a^{2}\right\rangle^{G}=\left\langle a^{2}, b^{2^{n}}\right\rangle$ and $a \in N_{G}\left(\left\langle a^{2}\right\rangle\right)-\left\langle a^{2}\right\rangle^{G}$; if G is (b), then $\left\langle a^{2} b^{2^{n-2}}\right\rangle \nsubseteq G,\left\langle a^{2} b^{2^{n-2}}\right\rangle^{G}=\left\langle a^{2} b^{2^{n-2}}, a^{4}\right\rangle$ and $b \in N_{G}\left(\left\langle a^{2} b^{2^{n-2}}\right\rangle\right)-$ $\left\langle a^{2} b^{2^{n-2}}\right\rangle^{G}$; if G is (c), then $\langle a\rangle \nexists G,\langle a\rangle^{G}=\left\langle a, 2^{2^{n-1}-2} x\right\rangle$ and $x \in N_{G}(\langle a\rangle)-$ $\langle a\rangle^{G}$; if G is (d), then $\langle a\rangle \nexists G,\langle a\rangle^{G}=\left\langle a, b^{2}\right\rangle$ and $x \in N_{G}(\langle a\rangle)-\langle a\rangle^{G}$. The proof is complete.
Lemma 3.8. Let p be an odd prime. Then there is no non-abelian \mathcal{P}-group of order at least p^{5}.

Proof. By Lemmas 2.6 and 3.3, we only need to prove there exists no nonabelian \mathcal{P}-group of order p^{5}. If exists, let G be a non-abelian \mathcal{P}-group of order p^{5}. Hence there is an element $x \in Z(G)$ with $o(x)=p$ such that $G /\langle x\rangle$ is a non-abelian \mathcal{P}-group by Lemmas 2.6 and 3.3. Thus, by Lemma 3.4, $G /\langle x\rangle \cong$ $M_{p}(2,2)$ and so $\left|G^{\prime}\right|=p$ or p^{2}. If $\left|G^{\prime}\right|=p$, then by Lemma $2.7, d(G)=2$ and so G is a minimal non-abelian group by [6, Lemma 2.2], in contradiction to Lemma 3.1. Now assume $\left|G^{\prime}\right|=p^{2}$ and write $\bar{G}=G /\langle x\rangle=\langle\bar{a}, \bar{b}| \bar{a}^{p^{2}}=\bar{b}^{p^{2}}=$ $\left.1,[\bar{a}, \bar{b}]=\bar{a}^{p}\right\rangle$. Then $a^{p^{2}} \neq 1$, which implies $G^{\prime} \cong C_{p^{2}}$ and by [3, Chapter VIII, Lemma 1.1(b)], we have $\left\langle\left[a, b^{p}\right]\right\rangle=\langle x\rangle$. Let $A=\left\langle a, b^{p}\right\rangle$. Then $A \cong M_{p}(3,1)$ by [6, Lemma 2.2] and Lemma 2.2. Hence there exists an element $\alpha \in A \backslash Z(A)$ such that $o(\alpha)=p$, and so $\langle\alpha\rangle \nsubseteq G$. Since $1=\left[\alpha^{p}, g\right]=[\alpha, g]^{p}=\left[\alpha, g^{p}\right]$ for any $g \in G$ by [3, Chapter VIII, Lemma 1.1(b)] once more, we see $\langle\alpha\rangle^{G}=$ $\langle\alpha, x\rangle$ and $a^{p} \in C_{G}(\langle\alpha\rangle)$. Noticing that $o\left(a^{p}\right)=p^{2}$, we see $a^{p} \notin\langle\alpha\rangle^{G}$ and so $N_{G}(\langle\alpha\rangle) \not \leq\langle\alpha\rangle^{G}$, which implies that G is not a \mathcal{P}-group, a contradiction. The proof is complete.

Proof of Theorem 1.2. The sufficiency follows from Lemmas 3.2 and 3.5. In the following, we will prove the necessity.

Let G be a \mathcal{P}-group. Without loss of generality, we may assume that G is non-Dedekind. If $|G|=2^{3}$, then $G \cong D_{8}$ which is of maximal class. If $|G|=2^{4}$, then by Lemma 3.4, G is either of maximal class or isomorphic to $M_{2}(2,2)$. Now assume $|G| \geq 2^{5}$. Choose a subgroup $N \unlhd G$ such that $N \leq G^{\prime}$ and $|N|=2$. By Lemma 2.6, $\bar{G}=G / N$ is a \mathcal{P}-group, and so \bar{G} is of one of the types (1) to (4) listed in Theorem 1.2 by induction. It follows from Lemmas 3.3 and 3.7 that \bar{G} can not be (1) and (4). If \bar{G} is (2), then $C_{2}^{2} \cong \bar{G} / \bar{G}^{\prime} \cong G / G^{\prime}$ by Lemma 2.4, and therefore G is also (2). If \bar{G} is (3), then by Lemma 3.6, G is (2) or (3).

Proof of Theorem 1.3. The sufficiency follows from Lemma 3.1. Conversely, let G be a non-abelian \mathcal{P}-group, where p is an odd prime. By Lemma 3.8, $|G| \leq p^{4}$. If $|G|=p^{4}$, then $G \cong M_{p}(2,2)$ by Lemma 3.4. If $|G|=p^{3}$, then G is isomorphic to either $M_{p}(2,1)$ or $M_{p}(1,1,1)$ by Lemma 2.2.

Acknowledgment. The authors are very grateful to the referee who read the manuscript carefully and provided a lot of valuable suggestions and useful comments.

References

[1] Y. Berkovich, Groups of Prime Power Order. Vol. 1, De Gruyter Expositions in Mathematics, 46, Walter de Gruyter GmbH \& Co. KG, Berlin, 2008.
[2] B. Huppert, Endliche Gruppen. I, Die Grundlehren der Mathematischen Wissenschaften, Band 134, Springer-Verlag, Berlin, 1967.
[3] B. Huppert and N. Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften, 242, Springer-Verlag, Berlin, 1982.
[4] H. Lv, W. Zhou, and D. Yu, Some finite p-groups with bounded index of every cyclic subgroup in its normal closure, J. Algebra 338 (2011), 169-179.
[5] L. Rédei, Das "schiefe Produkt" in der Gruppentheorie mit Anwendung auf die endlichen nichtkommutativen Gruppen mit lauter kommutativen echten Untergruppen und die Ordnungszahlen, zu denen nur kommutative Gruppen gehören, Comment. Math. Helv. 20 (1947), 225-264.
[6] M. Xu, L. An, and Q. Zhang, Finite p-groups all of whose non-abelian proper subgroups are generated by two elements, J. Algebra 319 (2008), no. 9, 3603-3620.
[7] X. Zhang and X. Guo, Finite p-groups whose non-normal cyclic subgroups have small index in their normalizers, J. Group Theory 15 (2012), no. 5, 641-659.
[8] L. Zhao and X. Guo, Finite p-groups in which the normal closures of the non-normal cyclic subgroups have small index, J. Algebra Appl. 13 (2014), no. 2, 1350087, 7 pp.

Pengfei Bai
School of Applied Mathematics
Shanxi University of Finance and Economics
Taiyuan 030006, P. R. China
Email address: baipengfei870514@163.com
Xiuyun Guo
Department of Mathematics
Shanghai University
Shanghai 200444, P. R. China
Email address: xyguo@staff.shu.edu.cn
Junxin Wang
School of Applied Mathematics
Shanxi University of Finance and Economics
Taiyuan 030006, P. R. China
Email address: wangjunxin660712@163.com

[^0]: Received December 22, 2017; Revised May 19, 2018; Accepted August 2, 2018.
 2010 Mathematics Subject Classification. 20D15, 20D25.
 Key words and phrases. normalizer, normal closure, Dedekind p-group, p-group of maximal class.

 The research of the work was partially supported by the National Natural Science Foundation of China(11771271) and the National Natural Science Foundation of China (11801334).

