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FINITE p-GROUPS IN WHICH THE NORMALIZER OF

EVERY NON-NORMAL SUBGROUP IS CONTAINED IN ITS

NORMAL CLOSURE

Pengfei Bai, Xiuyun Guo, and Junxin Wang

Abstract. In this paper, finite p-groups G satisfying NG(H) ≤ HG for

every non-normal subgroup H of G are completely classified. This solves

a problem proposed by Y. Berkovich.

1. Introduction

All groups considered in this paper are finite. It is well-known that the
normality of subgroups plays an important role in the research of group theory.
But not every subgroup is normal. If H is a non-normal subgroup of a p-group
G, then we have

H < NG(H) < G and H < HG < G.

It is a way to measure the degree of the normality of H by using NG(H) or
HG. Many authors have developed their work in this line. For example, Lv,
Zhou and Yu in [4] studied the p-group G with |〈a〉G : 〈a〉| ≤ pm for every
cyclic subgroup 〈a〉 of G, and Zhang and Guo in [7] investigated the p-groups
whose non-normal cyclic subgroups have small index in their normalizers, and
Zhao and Guo in [8] determined the p-groups in which the normal closures of
the non-normal cyclic subgroups have small index. Y. Berkovich has proposed
the following problem:

Problem 1.1 ([1, Problem 439]). Study the p-groups G such that, whenever
H is a non-normal subgroup of G, then NG(H) ≤ HG.

This problem connects normalizers with normal closures, and the condition
NG(H) ≤ HG indicates that H has low degree of normality in some sense.
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In the following, we will classify the p-groups in Problem 1.1 completely. For
convenience, such groups are called P-groups. The main results are:

Theorem 1.2. A 2-group G is a P-group if and only if G is of one of the
following types:

(1) a Dedekind 2-group;
(2) a maximal class 2-group;

(3) 〈a, b
∣∣ a22 = b2

n

= 1, [b, a] = b−2〉, where n ≥ 2;

(4) 〈a, b
∣∣ a22 = b2

n

= 1, [b, a] = b2
n−1−2〉, where n ≥ 3.

Moreover, except for Q8 (Q8 is of type (1) and type (2)), groups of different
types, or of same type but with different values of parameters, are not isomor-
phic.

Theorem 1.3. Let p be an odd prime. Then a p-group G is a P-group if and
only if G is of one of the following types:

(1) an abelian p-group; (2) Mp(2, 1); (3) Mp(1, 1, 1); (4) Mp(2, 2).

The meanings of Mp(2, 1), Mp(1, 1, 1) and Mp(2, 2) see Lemma 2.2.

2. Preliminaries

In this section, we first recall some basic concepts and notations, and then
give some basic results which are useful in the sequel.

We use D2n , Q2n , SD2n , Cpn and Cn
p to denote the dihedral group of order

2n, the generalized quaternion group of order 2n, the semi-dihedral group of
order 2n, the cyclic group of order pn and the elementary abelian group of
order pn, respectively. We use A ∗ B, A× B and A− B to denote the central
product, the direct product and the set {x |x ∈ A,butx 6∈ B} of a group A
and a group B. We also use d(G) and c(G) to denote the minimal number
of generators of a group G and the nilpotent class of G. If G is a p-group,

then Ω{i}(G) = {g ∈ G | gpi

= 1}, f{i}(G) = {gpi | g ∈ G}, Ωi(G) = 〈Ω{i}(G)〉
and fi(G) = 〈f{i}(G)〉, respectively. All other terminology and notation not
mentioned here are standard.

Definition 2.1 ([1, §1, Definition 2]). A group G of order pm is said to be of
maximal class if m > 2 and c(G) = m− 1.

Lemma 2.2 ([5]). Let G be a minimal non-abelian p-group. Then G is iso-
morphic to one of the following groups:

(1) Q8 = 〈a, b
∣∣ a4 = 1, b2 = a2, ab = a−1〉;

(2) Mp(n,m) = 〈a, b
∣∣ apn

= bp
m

= 1, ab = a1+pn−1〉, where n ≥ 2, m ≥ 1;

(3) Mp(n,m, 1) = 〈a, b
∣∣ apn

= bp
m

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉,
where n ≥ m ≥ 1, and if p = 2, then m+ n ≥ 3.

Lemma 2.3 ([1, §1, Lemma 1.4]). Let G be a p-group and N E G. If N
has no abelian G-invariant subgroups of type (p, p), then N is either cyclic or
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isomorphic to one of the groups D2n , Q2n and SD2n . If, in addition, N ≤
Φ(G), then N is cyclic. In particular, if G has no abelian normal subgroups
of type (p, p), then G is either cyclic or isomorphic to one of the groups D2n ,
Q2n and SD2n .

Lemma 2.4 ([2, Satz.III, Theorem 11.9]).

(1) If G is a non-abelian 2-group such that G/G′ ∼= C2
2 , then G is one of the

groups D2n , Q2n and SD2n .
(2) If G is a 2-group of maximal class, then G is one of the groups D2n , Q2n

and SD2n .
(3) A 2-group G is of maximal class if and only if G is a non-abelian 2-group

with G/G′ ∼= C2
2 .

Lemma 2.5. Let G be a nontrivial 2-group. If G is not of maximal class, then
there exists a nontrivial subgroup N ≤ Z(G) such that G/N is not of maximal
class.

Proof. If G is abelian, then the lemma is clear. Now assume that G is non-
abelian. ThenG/G′ � C2

2 by Lemma 2.4, and there exists a nontrivial subgroup
N of G such that N ≤ G′ ∩ Z(G). Since (G/N)/(G′/N) ∼= G/G′, it follows
from Lemma 2.4 once more that G/N is not of maximal class. �

Lemma 2.6. Let N be a normal subgroup of a P-group G. Then G/N is also
a P-group.

Proof. For any subgroup H/N of G/N , if H/N 5 G/N , then H 5 G and so
NG(H) ≤ HG. Noticing that

NG/N (H/N) = NG(H)/N ≤ HG/N = (H/N)G/N ,

we see G/N is also a P-group. �

Lemma 2.7. Let G be a non-Dedekind p-group. If d(G) ≥ 3 and |G′| = p,
then G is a non-P-group.

Proof. Since G is not a Dedekind group, there exist elements a, b ∈ G such that
〈b〉 6E G and [a, b] 6= 1. Now write A = 〈a, b〉. Then it follows from |G′| = p
that A′ = G′ and AEG. By [6, Lemma 2.2], A is a minimal non-abelian group
and so G = A ∗ CG(A) by [1, §4, Lemma 4.2]. Clearly CG(A) ≤ NG(〈b〉) and
〈b〉G ≤ A. If CG(A) ≤ 〈b〉G, then G = A, in contradiction to the condition
d(G) ≥ 3. Therefore G is a non-P-group. �

Lemma 2.8. Suppose that a, b and x are elements of a 2-group G, where
x ∈ Z(G) and o(x) = 2.

(1) If [b, a] = b−2xi with i = 0 or 1, then [b, a2] = 1;

(2) If b2
n+1

= 1, and [b, a] = b2
n−1−2xj, where n ≥ 3 and j = 0 or 1, then

[b, a2] = b2
n

.
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Proof. (1) From [b, a] = b−2xi, we get ba = b−1xi. So ba
2

= (b−1xi)a =
(b−1xi)−1xi = b.

(2) Clearly, we have ba = b2
n−1−1xj , and it follows that

ba
2

= (b2
n−1−1xj)a = (b2

n−1−1xj)2
n−1−1xj = b(2

n−1−1)2 = b−2
n+1 = b2

n

b.

Hence [b, a2] = b2
n

. �

3. The classification of P-groups

In this section, we first give some properties of P-groups, and then classify
P-groups.

Lemma 3.1. Let G be a minimal non-abelian p-group. Then G is a P-group
if and only if |G| = p3 or G ∼= Mp(2, 2).

Proof. “ ⇐ ” If |G| = p3, then |H| = p for any non-normal subgroup H of
G and so NG(H) E G, which indicates that HG = NG(H). If G ∼= Mp(2, 2),
then Ω1(G) = Z(G) and so |H| = p2 for any non-normal subgroup H of G.
Similarly, we have NG(H) = HG. Hence the sufficiency holds.

“⇒ ” Let G be a P-group and suppose that |G| > p3. By Lemma 2.2, G is
one of the following groups:

(a) G = 〈a, b
∣∣ apn

= bp
m

= 1, [a, b] = ap
n−1〉, where n + m ≥ 4 and

n ≥ 2,m ≥ 1;
(b) G = 〈a, b

∣∣ apn

= bp
m

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉, where
n+m ≥ 3 and n ≥ m ≥ 1.

Assume G is type (a). If n = 2 and m > 2, then 〈abp〉 6E G and 〈abp〉G =
〈abp, ap〉. Clearly a ∈ NG(〈abp〉) but a 6∈ 〈abp〉G, so G is not a P-group. If

n ≥ 3, then 〈b〉G = 〈b, apn−1〉. Since ap ∈ NG(〈b〉) and ap 6∈ 〈b〉G, we see G
is not a P-group. Therefore G ∼= Mp(2, 2). Now assume G is type (b). Then
〈b〉G = 〈b, c〉. Noticing that ap ∈ NG(〈b〉) and ap 6∈ 〈b〉G, hence G is not a
P-group. The proof is complete. �

Lemma 3.2. Let G be a 2-group of maximal class. Then G is a P-group.

Proof. Assume the lemma is false and let G be a counterexample of minimal
order. Then G has a non-normal subgroup H such that NG(H) 6≤ HG and
by Lemma 3.1, we see |G| ≥ 24. Now write G = G/Z(G). Then G is also a
2-group of maximal class, and so G is a P-group.

If H 5 G, then NG(H) ≤ H
G

= HG/Z(G) and it follows that NG(H) ≤
HG, a contradiction. Now assume H E G. Then HG = HZ(G) 6= H and
|HG : H| = 2. In this case, if |G : H| = 4, then NG(H) = HG, a contradiction.
If |G : H| > 4, then |G : HG| ≥ 4 and thus HG ≤ G′. By Lemma 2.4, G′ is
cyclic and so H char G′, which implies H E G, the final contradiction. �
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Lemma 3.3. Let G be a p-group of order at least p5. If there exists a normal
subgroup N of order p such that G/N is a Dedekind group, then G is either a
non-P-group or a Dedekind group.

Proof. Assume G is not a Dedekind group. In the following, we will prove that
G is a non-P-group. Write G = G/N . Then G is either abelian or isomorphic
to Q8 × C, where C is an elementary abelian 2-group. Hence |G′| = p or 4.

Firstly, assume |G′| = p. If d(G) = 2, then G is a non-P-group by [6, Lemma
2.2] and Lemma 3.1. If d(G) ≥ 3, then G is also a non-P-group by Lemma
2.7. Now assume |G′| = 4. Then G ∼= Q8 × C and thus exp(G) = 8 or 4.
If exp(G) = 8, then there exist elements x, y ∈ G such that o(x) = 8 and
〈x, y

∣∣ x4 = 1, y2 = x2, [x, y] = x2〉 ∼= Q8. Let N = 〈z〉. From y2 = x2, we

get x2 = y2zk, where k = 0 or 1, and therefore [x2, y] = 1. On the other
hand, by [x, y] = x2,we have [x, y] = x2zi with i = 0 or 1, and it follows that
[x2, y] = [x, y]x[x, y] = [x, y]2 = x4, a contradiction. Hence exp(G) = 4. Since
G is non-Dedekind and G is Dedekind, there exists an element u ∈ G such that
〈u〉 6E G, 〈u〉G = 〈u〉 × N and thus |〈u〉G|

∣∣ 8. Let C be the conjugacy class
of u. Noticing that ug = u[u, g] ∈ uG′ with g ∈ G, we see |C| ≤ |uG′| ≤ 4
and thus |G : CG(u)| = |C|

∣∣ 4. If NG(〈u〉) ≤ 〈u〉G, then since |G| ≥ 25, it is

easy to see that |G| = 25, o(u) = 4 and NG(〈u〉) = CG(u) = 〈u〉G. Hence, for
any h ∈ G, uh 6= u3 and so |C| ≤ 2 as C ⊆ 〈u〉G, which implies |G| ≤ 24, a
contradiction. Therefore G is a non-P-group. The proof is complete. �

Lemma 3.4. Let G be a non-abelian p-group of order p4. Then G is a P-group
if and only if G is isomorphic to one of the following groups:

(1) Maximal class 2-groups of order p4; (2) Q8 × C2; (3) Mp(2, 2).

Proof. By Lemma 3.1 and Lemma 3.2, the sufficiency holds. We now prove the
necessity. Since G is non-abelian of order p4, we have |G′| = p or p2.

Assume |G′| = p. If d(G) = 2, then G is a minimal non-abelian p-group by
[6, Lemma 2.2] and it follows from Lemma 3.1 that G ∼= Mp(2, 2) . If d(G) ≥ 3,
then G is a Dedekind p-group by Lemma 2.7 and therefore G ∼= Q8×C2. Now
assume |G′| = p2. From G/CG(G′) . Aut (G′), we get that G has an abelian
maximal subgroup A, and so G is a p-group of maximal class by [1, §1, Exercise
4]. Hence for i = 1, 2, G has unique normal subgroup of order pi. If p = 2,
then G is a 2-group of maximal class. If p > 2, then G′ ∼= C2

p by Lemma 2.3,

and therefore G′ has a subgroup H such that |H| = p and H 6E G. Thus HG

= G′. Noticing that A ≤ NG(H), we see NG(H) 6≤ HG. This show that G is
not a P-group. The proof is complete. �

Lemma 3.5. If G is a group of one of the following types, then G is a P-group.

(1) 〈a, b
∣∣ a22 = b2

n

= 1, [b, a] = b−2〉, where n ≥ 2;

(2) 〈a, b
∣∣ a22 = b2

n

= 1, [b, a] = b2
n−1−2〉, where n ≥ 3.

Moreover, groups of different types, or of same type but with different values of
parameters, are not isomorphic.
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Proof. Let Gi = 〈ai, bi〉 be a group of type (i) with i ∈ {1, 2}. Then

(1) G1 = 〈a1, b1
∣∣ a221 = b2

n

1 = 1, [b1, a1] = b−21 〉, where n ≥ 2;

(2) G2 = 〈a2, b2
∣∣ a222 = b2

n

2 = 1, [b2, a2] = b2
n−1−2

2 〉, where n ≥ 3.

Clearly, C〈ai〉(bi) = 〈a2i 〉, C〈bi〉(ai) = 〈b2n−1

i 〉. If aki b
j
i ∈ Z(Gi), then 1 =

[aki b
j
i , bi] = [aki , bi], and so aki ∈ 〈a2i 〉. Similarly we have bji ∈ 〈b2

n−1

i 〉. This

shows that Z(Gi) = 〈a2i 〉 × 〈b2
n−1

i 〉, and for any integers s, t, it follows that

(a2si b
t
i)

2 = b2ti ;

(a2s+1
1 bt1)2 = (a1b

t
1)2 = a21(ba1

1 )tbt1 = a21;

(a2s+1
2 bt2)2 = (a2b

t
2)2 = a22(ba2

2 )tbt2 = a22b
t2n−1

2 .

Hence

Z(Gi) = 〈a2i 〉 × 〈b2
n−1

i 〉 = Ω1(Gi).

In addition, we have G′i = 〈b2i 〉, and then

|Gi/〈a2i 〉 : (Gi/〈a2i 〉)′| = |Gi/〈a2i b2
n−1

i 〉 : (Gi/〈a2i b2
n−1

i 〉)′| = 4.

By Lemma 2.4, Gi/〈a2i 〉 and Gi/〈a2i b2
n−1

i 〉 are all 2-groups of maximal class,

and therefore Gi/〈a2i 〉 and Gi/〈a2i b2
n−1

i 〉 are all P-groups by Lemma 3.2. For

convenience, write Gi = Gi/〈b2
n−1

i 〉 in the following.
Firstly, we prove that G1 is a P-group. Suppose that G1 is a counterexample

of minimal order. Then n ≥ 3 by Lemma 3.1. Noticing that G1 has the same
type as G1, we see that G1 is a P-group. Thus for any subgroup M of order
2, G1/M is a P-group. Let H be any non-normal subgroup of G. Choose a
subgroup N of H of order 2. Then H/N 5 G1/N and so NG1/N (H/N) ≤
(H/N)G1/N . Therefore NG1(H) ≤ HG1 , a contradiction.

Next, we prove G2 is a P-group. Since G2 = 〈a2, b2
∣∣ a222 = b2

2n−1

=

1, [b2, a2] = b2
−2〉 is of the same type as G1, G2 is a P-group. Thus G2/L is a

P-group for any subgroup L of order 2. If H 5 G2, then NG2(H) ≤ HG2 by
the same way as above and G2 is a P-group.

Clearly, f{1}(G1) = {a21, b2e1 } and f{1}(G2) = {a22bl2
n−1

2 , b2f2 }, where 0 ≤ l ≤
1, 0 ≤ e ≤ 2n−1− 1 and 0 ≤ f ≤ 2n−1− 1. Therefore groups of different types,
or of same type but with different values of parameters, are not isomorphic.
The proof is complete. �

Lemma 3.6. Let G be a P-group. If there exists a subgroup N ≤ Z(G) such

that |N | = 2 and G/N ∼= 〈a, b
∣∣ a22 = b2

n−1

= 1, [b, a] = b−2〉 with n ≥ 3, then
G is isomorphic to one of the following groups:

(1) 〈a, b
∣∣ a22 = b2

n

= 1, [b, a] = b−2〉, where n ≥ 3;

(2) 〈a, b
∣∣ a22 = b2

n

= 1, [b, a] = b2
n−1−2〉, where n ≥ 3.
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Proof. Suppose that N = 〈x〉 and let G/N = 〈a, b
∣∣ a22 = b

2n−1

= 1, [b, a] =

b
−2〉 with n ≥ 3. Then there exist integers i, j, k ∈ {0, 1} such that

G = 〈a, b, x
∣∣ a22 = xi, b2

n−1

= xj , x2 = 1, [b, a] = b−2xk, [x, a] = [x, b] = 1〉.

By Lemma 2.8, [b, a2] = 1. If a2
2

= x, b2
n−1

= xj , [b, a] = b−2x, then, replacing

b with a2b, we get a2
2

= x, b2
n−1

= xj , [b, a] = b−2. Hence, G is one of the
following groups:

(a) 〈a, b
∣∣ a23 = 1, b2

n−1

= a2
2

, [b, a] = b−2〉, which is isomorphic to 〈a, b
∣∣

a2
3

= 1, b2
n−1

= a2
2

, [b, a] = b2
n−1−2〉;

(b) 〈a, b
∣∣ a23 = b2

n−1

= 1, [b, a] = b−2〉, which is isomorphic to 〈a, b
∣∣ a23 =

1, b2
n−1

= 1, [b, a] = a4b−2, [a4, b] = 1〉;
(c) 〈a, b, x

∣∣ a22 = b2
n−1

= x2 = 1, [b, a] = b−2x, [x, a] = [x, b] = 1〉;
(d) 〈a, b, x

∣∣ a22 = b2
n−1

= x2 = 1, [b, a] = b−2, [x, a] = [x, b] = 1〉;
(e) 〈a, b

∣∣ a22 = b2
n

= 1, [b, a] = b−2〉;
(f) 〈a, b

∣∣ a22 = b2
n

= 1, [b, a] = b2
n−1−2〉.

We will prove the groups (a), (b), (c) and (d) all are not P-groups. In

fact, if G is (a), then 〈a2b2n−2〉 5 G, 〈a2b2n−2〉G = 〈a2b2n−2

, a4〉 and b ∈
NG(〈a2b2n−2〉)−〈a2b2n−2〉G; if G is (b), then 〈a2b〉 5 G, 〈a2b〉G = 〈a2b, a4〉 and
a2 ∈ NG(〈a2b〉) − 〈a2b〉G; if G is (c), then 〈a〉 5 G, 〈a〉G = 〈a, b2x〉 and x ∈
NG(〈a〉)−〈a〉G; if G is (d), then 〈a〉 5 G, 〈a〉G = 〈a, b2〉 and x ∈ NG(〈a〉)−〈a〉G.
Hence, G can only be (e) or (f). The proof is complete. �

Lemma 3.7. Let G be a P-group of order 2n+3 ≥ 26. Then for any subgroup

N ≤ Z(G) with |N | = 2, G/N 6∼= 〈a, b
∣∣ a22 = b2

n

= 1, [b, a] = b2
n−1−2〉.

Proof. Assume the conclusion is false. Then G has a normal subgroup 〈x〉 of

order 2 such that G/〈x〉 = 〈a, b
∣∣ a22 = b

2n

= 1, [b, a] = b
2n−1−2〉 with n ≥ 3.

From which we see that there exist integers i, j, k ∈ {0, 1} such that

(∗) G=〈a, b, x
∣∣ a22 =xi, b2

n

=xj , x2 =1, [b, a]=b2
n−1−2xk, [x, a]=[x, b]=1〉.

By Lemma 2.8, we have [b, a2] = b2
n

, and then

ba
2

= b2
n+1 , [b2, a2] = 1 , ba

3

= b2
n−1−1b2

n

xk.

Also (ab)2 = a2(a−1ba)b = a2(b2
n−1−1xk)b = a2b2

n−1

xk.

If a2
2

= x, b2
n

= x, [b, a] = b2
n−1−2xk, then, replacing a with ab, we get

a2
2

= 1, b2
n

= x, [b, a] = b2
n−1−2xk. If a2

2

= 1, b2
n

= x, [b, a] = b2
n−1−2x, then

replacing a with a−1, we get a2
2

= 1, b2
n

= x, [b, a] = b2
n−1−2. The argument

shows that groups with relations expressed in (∗) are isomorphic to each other

whenever j = 1. On the other hand, if a2
2

= x, b2
n

= 1, [b, a] = b2
n−1−2x, then

[b, a2] = 1, and by replacing b with a2b, we get a2
2

= x, b2
n

= 1, [b, a] = b2
n−1−2.

This indicates that the group in (∗) with i = 1, j = 0, k = 1 is isomorphic to
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the group in (∗) with i = 1, j = 0, k = 0. Hence, G is one of the following
groups:

(a) 〈a, b
∣∣ a22 = b2

n+1

= 1, [b, a] = b2
n−1−2〉;

(b) 〈a, b
∣∣ a23 = b2

n

= 1, [b, a] = b2
n−1−2〉;

(c) 〈a, b, x
∣∣ a22 = b2

n

= x2 = 1, [b, a] = b2
n−1−2x, [x, a] = [x, b] = 1〉;

(d) 〈a, b, x
∣∣ a22 = b2

n

= x2 = 1, [b, a] = b2
n−1−2, [x, a] = [x, b] = 1〉.

It is easy to check that all above listed groups are not P-groups. In fact, if
G is (a), then 〈a2〉 5 G, 〈a2〉G = 〈a2, b2n〉 and a ∈ NG(〈a2〉) − 〈a2〉G; if G is

(b), then 〈a2b2n−2〉 5 G, 〈a2b2n−2〉G = 〈a2b2n−2

, a4〉 and b ∈ NG(〈a2b2n−2〉) −
〈a2b2n−2〉G; if G is (c), then 〈a〉 5 G, 〈a〉G = 〈a, b2n−1−2x〉 and x ∈ NG(〈a〉)−
〈a〉G; if G is (d), then 〈a〉 5 G, 〈a〉G = 〈a, b2〉 and x ∈ NG(〈a〉) − 〈a〉G. The
proof is complete. �

Lemma 3.8. Let p be an odd prime. Then there is no non-abelian P-group of
order at least p5.

Proof. By Lemmas 2.6 and 3.3, we only need to prove there exists no non-
abelian P-group of order p5. If exists, let G be a non-abelian P-group of order
p5. Hence there is an element x ∈ Z(G) with o(x) = p such that G/〈x〉 is a
non-abelian P-group by Lemmas 2.6 and 3.3. Thus, by Lemma 3.4, G/〈x〉 ∼=
Mp(2, 2) and so |G′| = p or p2. If |G′| = p, then by Lemma 2.7, d(G) = 2 and
so G is a minimal non-abelian group by [6, Lemma 2.2], in contradiction to

Lemma 3.1. Now assume |G′| = p2 and write G = G/〈x〉 = 〈a, b
∣∣ ap2

= b
p2

=

1, [a, b] = ap〉. Then ap
2 6= 1, which implies G′ ∼= Cp2 and by [3, Chapter VIII,

Lemma 1.1(b)], we have 〈[a, bp]〉 = 〈x〉. Let A = 〈a, bp〉. Then A ∼= Mp(3, 1)
by [6, Lemma 2.2] and Lemma 2.2. Hence there exists an element α ∈ A\Z(A)
such that o(α) = p, and so 〈α〉 6E G. Since 1 = [αp, g] = [α, g]p = [α, gp]
for any g ∈ G by [3, Chapter VIII, Lemma 1.1(b)] once more, we see 〈α〉G =
〈α, x〉 and ap ∈ CG(〈α〉). Noticing that o(ap) = p2, we see ap 6∈ 〈α〉G and so
NG(〈α〉) 6≤ 〈α〉G, which implies that G is not a P-group, a contradiction. The
proof is complete. �

Proof of Theorem 1.2. The sufficiency follows from Lemmas 3.2 and 3.5. In
the following, we will prove the necessity.

Let G be a P-group. Without loss of generality, we may assume that G
is non-Dedekind. If |G| = 23, then G ∼= D8 which is of maximal class. If
|G| = 24, then by Lemma 3.4, G is either of maximal class or isomorphic to
M2(2, 2). Now assume |G| ≥ 25. Choose a subgroup N EG such that N ≤ G′
and |N | = 2. By Lemma 2.6, G = G/N is a P-group, and so G is of one of the
types (1) to (4) listed in Theorem 1.2 by induction. It follows from Lemmas

3.3 and 3.7 that G can not be (1) and (4). If G is (2), then C2
2
∼= G/G

′ ∼= G/G′

by Lemma 2.4, and therefore G is also (2). If G is (3), then by Lemma 3.6, G
is (2) or (3). �
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Proof of Theorem 1.3. The sufficiency follows from Lemma 3.1. Conversely,
let G be a non-abelian P-group, where p is an odd prime. By Lemma 3.8,
|G| ≤ p4. If |G| = p4, then G ∼= Mp(2, 2) by Lemma 3.4. If |G| = p3, then G is
isomorphic to either Mp(2, 1) or Mp(1, 1, 1) by Lemma 2.2. �
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