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EUCLIDEAN SUBMANIFOLDS WITH CONFORMAL

CANONICAL VECTOR FIELD

Bang-Yen Chen and Sharief Deshmukh

Abstract. The position vector field x is the most elementary and natural

geometric object on a Euclidean submanifold M . The position vector
field plays very important roles in mathematics as well as in physics.

Similarly, the tangential component xT of the position vector field is the
most natural vector field tangent to the Euclidean submanifold M . We

simply call the vector field xT the canonical vector field of the Euclidean

submanifold M .
In earlier articles [4,5,9,11,12], we investigated Euclidean submanifolds

whose canonical vector fields are concurrent, concircular, torse-forming,

conservative or incompressible. In this article we study Euclidean sub-
manifolds with conformal canonical vector field. In particular, we charac-

terize such submanifolds. Several applications are also given. In the last

section we present three global results on complete Euclidean submani-
folds with conformal canonical vector field.

1. Introduction

For an n-dimensional submanifold M in the Euclidean m-space Em, the most
elementary and natural geometric object is the position vector field x of M .

The position vector is a Euclidean vector x =
−−→
OP that represents the position

of a point P ∈M in relation to an arbitrary reference origin O ∈ Em.
The position vector field plays important roles in physics, in particular in

mechanics. For instance, in any equation of motion, the position vector x(t) is
usually the most sought-after quantity because the position vector field defines
the motion of a particle (i.e., a point mass): its location relative to a given
coordinate system at some time variable t. The first and the second deriva-
tives of the position vector field with respect to time t give the velocity and
acceleration of the particle.
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For a Euclidean submanifold M of Em, there exists a natural decomposition
of the position vector field x given by:

x = xT + xN ,(1.1)

where xT and xN are the tangential and the normal components of x, respec-
tively. We denote by |xT | and |xN | the lengths of xT and of xN , respectively.

A vector field v on a Riemannian manifold N is called a torse-forming vector
field if it satisfies (cf. [19–21])

∇Xv = ϕX + α(X)v, ∀X ∈ TN,(1.2)

for some function ϕ and 1-form α on M , where ∇ denotes the Levi-Civita
connection of M . In the case that α is identically zero, v is called a concircular
vector field. In particular, if α = 0 and ϕ = 1, then v is called a concurrent
vector field.

In earlier articles, we have investigated Euclidean submanifolds whose canon-
ical vector fields are concurrent [4, 5], concircular [12], torse-forming [11], con-
servative or incompressible [9]. See [7,8] for two recent surveys on several topics
in differential geometry associated with position vector fields on Euclidean sub-
manifolds.

A tangent vector field v on a Riemannian manifold (N, g) is called a confor-
mal vector field if it satisfies

Lvg = 2ϕg,(1.3)

where L denotes the Lie derivative of (N, g) and ϕ is called the potential func-
tion of v.

In this article we study Euclidean submanifolds with conformal canonical
vector field. In particular, we characterize such submanifolds. Several appli-
cations are also given. In the last section we present three global results on
complete Euclidean submanifolds with conformal canonical vector field.

2. Preliminaries

Let x : M → Em be an isometric immersion of a connected Riemannian
manifold M into a Euclidean m-space Em. For each point p ∈M , we denote by
TpM and T⊥p M the tangent space and the normal space of M at p, respectively.

Let ∇ and ∇̃ denote the Levi–Civita connections of M and Em, respectively.
The formulas of Gauss and Weingarten are given respectively by (cf. [2, 3, 6])

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃Xξ = −AξX +DXξ(2.2)

for vector fields X, Y tangent to M and ξ normal to M , where h is the second
fundamental form, D the normal connection and A the shape operator of M .

For each normal vector ξ at p, the shape operator Aξ is a self-adjoint endo-
morphism of TpM . The second fundamental form h and the shape operator A
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are related by

(2.3) g(AξX,Y ) = g̃(h(X,Y ), ξ),

where g and g̃ denote the metric of M and the metric of the ambient Euclidean
space, respectively.

The mean curvature vector H of an n-dimensional submanifold M is defined
by

H =
1

n
trace h.(2.4)

A submanifold M is called totally umbilical (respectively, totally geodesic)
if its second fundamental form h satisfies

h(X,Y ) = g(X,Y )H(2.5)

identically (respectively, h = 0 identically).
A submanifold is said to be umbilical with respect to a normal vector field ξ

if its second fundamental form h satisfies

g̃(h(X,Y ), ξ) = µg(X,Y )(2.6)

for some function µ. In particular, a submanifold M is called pseudo-umbilical
if it is umbilical with respect to the mean curvature vector field H of M .

The Laplace operator ∆ of M acting on smooth vector fields on a Riemann-
ian n-manifold (M, g) is defined by

∆X =

n∑
i=1

(
∇ei∇eiX −∇∇ei

eiX
)
,(2.7)

where {e1, . . . , en} is an orthonormal local frame of M .

3. Euclidean submanifolds with conformal canonical vector field

The following result characterizes all Euclidean submanifolds with conformal
canonical vector field.

Theorem 3.1. Let M be a submanifold of the Euclidean m-space Em. Then
the canonical vector field xT of M is a conformal vector field if and only if
M is umbilical with respect to the normal component xN of the position vector
field x.

Proof. Let M be a submanifold of Em. Then, by using the fact that the position
vector field is a concurrent vector, we derive from Gauss’ and Weingarten’s
formulas that

Z = ∇̃Zx = ∇ZxT + h(xT , Z)−AxNZ +DZxN

for any vector Z tangent to M , where ∇̃ and ∇ are the Levi-Civita connections
of En+1 and of M , respectively. By comparing the tangential and normal
components of the last equation, we obtain

∇ZxT = Z +AxNZ,(3.1)
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h(xT , Z) = −DZxN .(3.2)

On the other hand, it is well-known that the Lie derivative on M satisfies
(see, e.g. [6, Page 18] or [22])

(Lvg)(X,Y ) = g(∇Xv, Y ) + g(X,∇Y v)(3.3)

for any vector fields X,Y, v tangent to M .
After combining (3.1) and (3.3) we find

(LxT g)(X,Y ) = 2g(X,Y ) + g(AxNX,Y ) + g(X,AxNY ).(3.4)

Therefore, by applying (2.3) we obtain

(LxT g)(X,Y ) = 2g(X,Y ) + 2g(h(X,Y ),xN )(3.5)

for vector fields X,Y tangent to M .
Now, let us suppose that the canonical vector field xT of the submanifold

M is a conformal vector field. Then we have

LxT g = 2ϕg(3.6)

for a function ϕ.
From (3.5) and (3.6) we derive

g(h(X,Y ),xN ) = (ϕ− 1)g(X,Y ),(3.7)

which shows that M is umbilical with respect to the normal component xN of
the position vector field x.

Conversely, let us assume that the submanifold M is umbilical with respect
to the normal component xN so that we have

g(h(X,Y ),xN ) = ηg(X,Y )(3.8)

for some function η. Then it follows from (3.5) and (3.8) that

(LxT g)(X,Y ) = 2(η + 1)g(X,Y ).(3.9)

Thus the canonical vector field xT is a conformal vector field on M . �

Remark 3.1. By applying the same proof as Theorem 3.1, we also know that
Theorem 3.1 remains true for space-like submanifolds of pseudo-Euclidean
spaces.

A unit normal vector field ξ of a Euclidean submanifold M is called a parallel
(resp., nonparallel) normal vector field if Dξ = 0 (resp., Dξ 6= 0) everywhere
on M (cf. [2, 13,14]).

An easy consequence of Theorem 3.1 is the following.

Corollary 3.1. Let M be a submanifold of Em with conformal canonical vector
field. If xN 6= 0 and xN/|xN | is a parallel normal vector field, then either

(1) M lies in a hyperplane Em−1 of Em, or
(2) M lies in hypersphere of Sm−1 centered the origin of Em.
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Proof. Let M be a submanifold of Em with conformal canonical vector field.
If xN 6= 0 and xN/|xN | is a parallel normal vector field, then it follows from
Theorem 3.1 that M is umbilical with respect to the parallel unit normal vector
field xN/|xN | satisfying (3.8).

If η in (3.8) vanishes identically, then it is easy to verify that M lies in a
hyperplane Em−1 of Em.

On the other hand, if η 6= 0, then it follows from [13, Theorem 3.3] that M
lies in hypersphere of Sm−1 centered the origin of Em. �

In the case that M is a Euclidean hypersurface of En+1 we have:

Corollary 3.2. Let M be a hypersurface of En+1 with conformal canonical
vector field. If xN 6= 0, then either

(1) M is an open portion of a hypersphere centered at the origin of En+1

or
(2) M is an open portion of a hyperplane which does not contain the origin

of En+1.

Proof. Let M be a hypersurface of En+1. Suppose that the canonical vector
field xT of M is a conformal vector field. If xN 6= 0, then the unit normal vector
field of M is a parallel normal vector field automatically. Hence Theorem 3.1
implies that M lies either in a hypersphere of Sn centered the origin of En+1

or in a hyperplane of En+1.
If the second case occurs, then the hyperplane does not contain the origin

of En+1; otherwise one has xN = 0 which is a contradiction. �

For Euclidean submanifolds of codimension 2, we have the following.

Corollary 3.3. Let (M, g) be an n-dimensional submanifold of En+2 with n >
3 and xN 6= 0. If the canonical vector field xT of M is a conformal vector field,
then we have:

(1) If xN

|xN | is a parallel normal section, then (M, g) lies in either a hyper-

plane or in a hypersphere of En+2.

(2) If xN

|xN | is a nonparallel normal section, then (M, g) is a conformally

flat space. Moreover, in this case M is the locus of (n− 1)-spheres.

Proof. Let (M, g) be an n-dimensional submanifold of En+2 with n > 3 and
xN 6= 0. If the canonical vector field xT of M is a conformal vector field, it
follows from Theorem 3.1 that M is umbilical with respect the normal direction
xN .

If xN/|xN | is a parallel normal section, Corollary 3.1 implies that M lies in
a hyperplane or in a hypersphere of En+2.

If xN/|xN | is a nonparallel normal section, it follows from [14, Theorem 3]
that (M, g) is a conformally flat space. Moreover, in this case it also follows
from [14, Theorem 4] that the submanifold is a locus of (n − 1)-spheres in
En+1. �
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4. Application to Yamabe solitons

The Yamabe flow was introduced by R. Hamilton at the same time as the
Ricci flow (cf. [16]). It deforms a given manifold by evolving its metric accord-
ing to

∂

∂t
g(t) = −R(t)g(t),(4.1)

where R(t) denotes the scalar curvature of the metric g(t). Yamabe solitons
correspond to self-similar solutions of the Yamabe flow.

A Riemannian manifold (M, g) is called a Yamabe soliton if it admits a
vector field v such that

(4.2)
1

2
Lvg = (R− λ)g,

where λ is a real number. The vector field v as in the definition is called a
soliton vector field for (M, g). We denote the Yamabe soliton satisfying (4.2)
by (M, g, v, λ).

By applying Theorem 3.1 we have the following.

Corollary 4.1. If a Euclidean submanifold (M, g) of Em is a Yamabe soli-
ton with the canonical vector field xT as its soliton vector field, then xT is a
conformal vector field.

Proof. Assume that Euclidean submanifold (M, g) of the Euclidean m-space
Em is a Yamabe soliton with its canonical vector field xT as the soliton vector
field. Then it follows from [10, Theorem 3.1] that the second fundamental form
h of M satisfies

g̃(h(V,W ),xN ) = (R− λ− 1)g(V,W )(4.3)

for vectors V,W tangent to M , where R is the scalar curvature of M and
λ is a constant. Hence M is umbilical with respect to xN . Consequently, the
canonical vector field xT is a conformal vector field of M according to Theorem
3.1. �

5. Application to generalized self-similar submanifolds

Consider the mean curvature flow for an isometric immersion x : M → Em,
that is, consider a one-parameter family xt = x( · , t) of immersions xt : M →
Em such that

d

dt
x(p, t) = H(p, t), x(p, 0) = x(p), p ∈M(5.1)

is satisfied, where H(p, t) is the mean curvature vector of Mt in Em at x(p, t).
An important class of solutions to the mean curvature flow equations are

self-similar shrinkers which satisfy a system of quasi-linear elliptic PDEs of
the second order, namely,

(5.2) H = −xN ,
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where xN is the normal component of the position vector field of x : M → Em as
before. Self-shrinkers play an important role in the study of the mean curvature
flow because they describe all possible blow up at a given singularity of a mean
curvature flow.

In view of (5.2), we simply call a Euclidean submanifold M a generalized
self-similar submanifold if it satisfies

(5.3) xN = fH

for some function f .
Obviously, it follows from (5.3) that every Euclidean hypersurface is a gen-

eralized self-similar hypersurface automatically.
By applying Theorem 3.1 we have the following.

Corollary 5.1. Let M be a generalized self-similar submanifold of the Eu-
clidean m-space Em. Then the canonical vector field of M is a conformal
vector field if and only if M is a pseudo-umbilical submanifold.

Proof. Let M be a generalized self-similar submanifold of Em. Then we have
(5.3). If the canonical vector field of M is a conformal vector field, then (3.7)
holds for some function ϕ. Clearly, it follows from (3.7) and (5.3) that M is
pseudo-umbilical.

Conversely, if M is pseudo-umbilical, then (5.3) implies that M is umbilical
with respect xN . Hence Theorem 3.1 implies that the canonical vector field of
M is a conformal vector field. �

6. Three global results on complete submanifolds with conformal
canonical vector field

Recall that Euclidean submanifolds in this article are assumed to be con-
nected (see Preliminaries). In this article, by a complete submanifold of Em we
mean a complete Riemannian manifold isometrically immersed in Em.

Theorem 6.1. Suppose that the canonical vector field xT on a complete sub-
manifold M of Em is non-parallel and conformal. If xT satisfies

∆xT = −λxT

for a non-negative constant λ, then either M is isometric to an n-sphere Sn(c)
or to the Euclidean space En with n = dimM .

Proof. Suppose that the canonical vector field xT is a non-parallel, conformal
vector field satisfying

LxT g = 2ϕg(6.1)

for some function ϕ. Using equation (3.1), we compute the curvature tensor of
the submanifold as

R(X,Y )xT = (∇AxN ) (X,Y )− (∇AxN ) (Y,X),
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where the covariant derivative

(∇AxN ) (X,Y ) = ∇XAxNY −AxN∇XY.
Using (6.1) and equation (3.7), we compute

R(X,Y )xT = (Xϕ)Y − (Y ϕ)X.

Taking inner product with xT in above equation, we get

(Xϕ)g(Y,xT ) = (Y ϕ)g(X,xT ),

that is, (Xϕ)xT = g(X,xT )∇ϕ, where ∇ϕ is the gradient of the function ϕ.
The last relation shows that the vector fields ∇ϕ and xT are parallel. Hence
there exists a smooth function β such that

(6.2) ∇ϕ = βxT .

Now, using (3.1), we compute

∆xT =
∑
i

(∇AxN ) (ei, ei),

which in view of equation (3.7) gives ∆xT = ∇ϕ, which in view of (6.2), yields
∆xT = βxT . Using the condition in the statement, we get β = −λ. Thus
equation (6.2) gives

(6.3) ∇ϕ = −λxT ,

which in view of (3.1), gives

(6.4) ∇X∇ϕ = −λ (X +AxNX) = −λϕX,

where we have used (3.8). If ϕ is not a constant, then equation (6.3) insures
that λ is a positive constant (since xT 6= 0 being a non-parallel vector). Thus,
equation (6.4) is Obata’s differential equation, which proves that M is isometric

to Sn(
√
λ) (cf. [17]).

If ϕ is a constant, then the function

f =
1

2
|xT |2,

on using equations (3.1) and (3.7) gives

Xf = g(X +AxNX,xT ) = ϕg(X,xT ),

that is, the gradient ∇f is given by

(6.5) ∇f = ϕxT .

Hence, the Hessian Hf of the function f is given by

(6.6) Hf (X,Y ) = ϕ2g(X,Y ).

Note that if f is a constant function, equation (6.5) would imply either the
constant ϕ = 0 or xT = 0, and both in view of equations (3.1) and (3.7) will
imply that xT is a parallel vector field, which is contrary to our assumption in
the hypothesis. Hence f is a non-constant function that satisfies equation (6.6)
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for nonzero constant ϕ2 implies that M is isometric to the Euclidean space En
(cf. [18, Theorem 1]). �

Next, we use the potential function ϕ of the conformal canonical vector field
xT and the support function f in the definition (5.3) of generalized self-similar
submanifold in proving the next result.

Theorem 6.2. Let M be a generalized self-similar complete submanifold of the
Euclidean space Em. If the canonical vector field xT is a conformal vector field
satisfying

Ric(xT ,xT ) +
n

2

[
xTϕ+ |H|2(xTf)

]
≥ 0, n = dimM,

then either M is isometric to the Euclidean n-space En or it is a submanifold
of constant mean curvature of a hypersphere Sm−1(c) of Em.

Proof. Equation (3.7) gives ng(H,xN ) = n(ϕ − 1), which in view of equation
(5.3) yields

(6.7) ϕ = 1 + f |H|2.

Taking covariant derivative in equation (5.3) and using (3.2), we get

(6.8) −h(X,xT ) = (Xf)H + fDXH.

Now, using equations (6.7) and (6.8), we have

Xϕ = (Xf)|H|2 + 2fg (DXH,H)

= −(Xf)|H|2 − 2g(H,h(X,xT )).(6.9)

Recall that the expression for Ricci tensor of a submanifold derived from
Gauss’ equation gives

(6.10) Ric(xT ,xT ) = ng(H,h(xT ,xT ))−
∑
i

∥∥h(ei,x
T )
∥∥2 ,

where {e1, e2, . . . , en} is a local orthonormal frame on M .
Inserting equation (6.10) in equation (6.9) gives

xTϕ+ |H|2(xT f) +
2

n
Ric(xT ,xT ) = − 2

n

∑
i

∥∥h(ei,x
T )
∥∥2 ,

which in view of the condition in the hypothesis gives

(6.11) h(X,xT ) = 0

for X tangent to M . Now, using equation (6.11), we find

(6.12) Ric(X,xT ) = 0.

However, using (3.1) and (3.7), we have R(X,Y )xT = (Xϕ)Y − (Y ϕ)X, which
gives

Ric(Y,xT ) = −(n− 1)(Y ϕ).(6.13)
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Thus, in view of equation (6.12), ϕ is a constant. Therefore equation (6.9)
implies that

(6.14) (Xf)|H|2 = 0.

Now, define a function

F =
1

2
|xT |2,

which has gradient ∇F = ϕxT and Hessian

HF (X,Y ) = ϕ2g(X,Y ).

If F is not a constant, then as ∇F = ϕxT , constant ϕ2 is nonzero, then M
is isometric to the Euclidean space En (cf. [18]).

If F is a constant, then |xT | is constant and equations (3.2) and (6.11) give
|xN | is constant. Consequently, |x| is a constant and this proves M is a subman-
ifold of the hypersphere Sm−1(c). Now, equation (6.14) gives (Xf)|H|2 = 0,
so either H = 0 or f is a constant.

Now, we claim that f is a nonzero constant, for if f = 0, then equation (5.3)
will give xN = 0, which by equation (3.1) implies ∇XxT = X, and as |xT | is a
constant, we get g(X,xT ) = 0 for any smooth vector field X tangent to M , that
is, xT = 0, that is, x = 0 and it is a contradiction. Therefore f is a nonzero
constant. Consequently, equation (5.3) implies that |H| is constant. �

Recall that a normal vector field ξ to a Euclidean submanifold M is said
to be parallel along a smooth curve γ : I → M if Dγ′ξ ≡ 0. Also, a smooth
function f : M → R is constant along γ if γ′f ≡ 0.

For a totally geodesic n-space En of Em, it is known that the canonical
vector field xT is a concurrent vector field satisfying

(6.15) ∇XxT = X.

Hence the canonical vector field xT is a non-parallel vector field. Also, it follows
from (3.3) and (6.15) that LxT g = 2g. Thus the canonical vector field xT is a
conformal vector field with constant potential ϕ = 1. Furthermore, the mean
curvature vector field H of En is zero vector which is trivially a parallel normal
vector field.

Conversely, we prove the following.

Theorem 6.3. Let M be a complete submanifold of Em whose canonical vector
field xT is non-parallel and conformal. If the potential function ϕ of xT is
constant along the integral curves of xT and the mean curvature vector field
H of M is parallel along the integral curves of xT , then M is isometric to a
Euclidean space.

Proof. Suppose that the potential function ϕ of xT is constant along the inte-
gral curves of xT and that the mean curvature vector field H of M is parallel



CONFORMAL CANONICAL VECTOR FIELD 1833

along the integral curves of xT . Then we have xTϕ = 0 and DxTH = 0. Then,
by applying (6.13), we get

(6.16) Ric(xT ,xT ) = −(n− 1)xTϕ = 0.

Also, equation (3.7) implies g(H,xN ) = ϕ − 1, which, in view of the fact
that H is parallel along the integral curves of xT , the equation (3.2) gives

xTϕ = −g(H,h(xT ,xT )).

Since ϕ is constant along integral curves of xT , equation (6.16) and above
equation yield

(6.17) g(H,h(xT ,xT )) = 0.

Using equations (6.16) and (6.17) in equation (6.10) gives

h(X,xT ) = 0

for any X tangent to M . The above equation implies Ric(X,xT ) = 0 for X
tangent to M , which proves Xϕ = 0. Hence ϕ is a constant.

Now, define the function f = 1
2

∣∣xT ∣∣2 , which in view of (3.1) and (3.7) gives
the gradient ∇f and the Hessian of f as

(6.18) ∇f = ϕxT , Hf (X,Y ) = ϕ2g(X,Y ).

If f is constant, then (6.18) implies either constant ϕ = 0 or xT = 0 and both
of these in view of equations (3.1), (3.7) will imply that xT is a parallel vector
field which is contrary to our assumption. Hence f must be a nonconstant
function satisfying the Hessian condition in (6.18) with nonzero constant ϕ.
Consequently, M is isometric to a Euclidean space (cf. [18, Theorem 1]). �

Remark 6.1. For further global results on compact Euclidean submanifolds
with conformal canonical vector fields, see [1, 15].
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