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DISTRIBUTION OF THE APPROXIMATION EXPONENTS

OF A FAMILY OF POWER SERIES OVER A FINITE FIELD

Khalil Ayadi and Iheb Elouaer

Abstract. In this paper, we exhibit the explicit forms of continued frac-

tion expansions of a family of algebraic power series over a finite field and
we study their asymptotic distribution of approximation exponents.

1. Introduction

Let p be a prime number and q = ps, where s is a positive integer. We
consider the finite field Fq with q elements. Then we introduce with an in-
determinate T , the ring of polynomials Fq[T ] and the field of rational func-
tions Fq(T ). We also consider the absolute value defined on Fq(T ) by |0| = 0
and |P/Q| = |T |degP−degQ for P,Q ∈ Fq[T ], where |T | is a fixed real num-
ber greater than 1. By completing Fq(T ) with this absolute value, we obtain
the field Fq((T−1)) of formal power series with coefficients in Fq. Then, if
α ∈ Fq((T−1))\{0}, we can write

α =
∑
i≤i0

ciT
i, where i0 ∈ Z, ci ∈ Fq, ci0 6= 0,

and |α| = |T |i0 . Observe the analogy between the classical construction of the
field of real numbers and this field of formal power series. The roles of ±1, Z,
Q and R are played by F∗q , Fq[T ], Fq(T ) and Fq((T−1)) respectively. We study

here rational approximation to elements of Fq((T−1)) which are algebraic over
Fq(T ). For a presentation in a larger context and for more references, see [10]
or [8]. Indeed the finiteness of the base field plays an essential role in many
results and this makes the field Fq((T−1)) particularly interesting.

As in the classical context of the real numbers, we have a continued fraction
algorithm in Fq((T−1)). If α ∈ Fq((T−1)), then we can write

α = a1 +
1

a2 +
1

a3 + · · ·

= [a1, a2, a3, . . .],
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where ai ∈ Fq[T ]. The ai are called the partial quotients and we have deg ai >
0 for i > 1. This continued fraction expansion is finite if and only if α ∈
Fq[T ]. As in the classical theory, we define recursively the two sequences of
polynomials (Pn)n>0 and (Qn)n>0 by Pn = anPn−1+Pn−2 and Qn = anQn−1+
Qn−2, with the initial conditions P1 = a1, P2 = a1a2 + 1, Q1 = 1 and Q2 =
a2. We have Pn+1Qn − Qn+1Pn = (−1)n, whence Pn and Qn are coprime
polynomials. The rational Pn/Qn is called a convergent to α and we have
Pn/Qn = [a1, a2, . . . , an]. Moreover we have for n ≥ 1 the equality:

α = [a1, a2, . . . , an, αn+1] =
Pnαn+1 + Pn−1
Qnαn+1 +Qn−1

,(1.1)

where αn+1 = [an+1, an+2, . . .] is called the complete quotient of α.
Continued fraction expansions of formal power series over finite fields are well

studied because, for example, of their close connection with best diophantine
approximations. For an algebraic irrational element of Fq((T−1)), define its
diophantine approximation exponent ν(α) by

ν(α) := lim sup(− log |α− P/Q|
log |Q|

),

where P and Q run over polynomials in Fq[T ]. If we know the continued
fraction expansion for α, the following equation satisfied by α:

|α− Pn/Qn| = |an+1|−1|Qn|−2 for n ≥ 0

allows us to compute the approximation exponent of α by the following way:

ν(α) = 2 + lim sup(
deg ak+1∑

1≤i≤k

deg ai
).(1.2)

According to Schmidt [8], it is also possible to define the approximation spec-
trum of α. This is the set of the accumulation points of the sequence2 + deg ak+1/

∑
1≤i≤k

deg ai


k≥1

.

This set is denoted S(α). Then ν(α) is the upper bound of S(α).
The well-known theorems of Dirichlet and Liouville in the case of real number

and their analogues for function fields [6] show that 2 ≤ ν(α) ≤ n, where n is
the algebraic degree of α. For the real number case, the well-known theorem
of Roth shows that ν(α) = 2, but Mahler [6] showed that ν(β) = n = q for
Tβq − Tβ − 1 = 0, as a direct estimate of approximation by truncation of

the series
∑
T−q

i

shows. This then raises the question of the possibilities of
knowing the distribution of the exponents of algebraic power series.
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We consider the following algebraic equation with coefficients A,B,C and
D in Fq[T ] and ∆ = AD −BC 6= 0:

x =
Axr +B

Cxr +D
(1.3)

with r = pt, t ≥ 0. If α is an irrational solution in Fq((T−1)) of such an
equation, we say that α is hyperquadratic or of Class I. After the work of
Baum and Sweet [3], we have find that this class preserve special consideration.
In fact, Baum and Sweet have given the first example of power series of Class
I with ν(α) = 2. They have also given other example with ν(α) > 2. Few years
later, the rational approximation of elements of Class I has been studied also
by Voloch [11] and more deeply by de Mathan [7]. They could show that if the
partial quotients in the continued fraction expansion of such elements α are
unbounded, then ν(α) > 2. By the work of de Mathan [7], we know moreover
that for elements of Class I, the approximation exponent ν(α) is a rational
number. Most of rational approximation that we know are for formal power
series belonging to this class. The reader can consult [2] to find examples of
formal power series with approximation exponent explicitly given.

A special elements of Class I which have been considered and studied by
Schmidt [8] and Thakur [9]. These element called of Class IA have particulary
condition, that is, ∆ is a constant polynomial. In this case the expansion is
completely and explicitly described and it has a very regular pattern. If α is
of Class IA such that α = [a1, . . . , at, . . . , an, . . .] where (a1, . . . , at) an arbi-
trary t-tuple of non-constant polynomials in Fq[T ], then the sequence of partial

quotients for α satisfies at+i = ε(−1)
i

aqi which can be obtained by the relation
αq = εαt+1 derived from the equation satisfied by α. Note that in Schmidt’s
work [8] a finite number of polynomials has been added to the beginning of the
expansion. Indeed if we add a finite number of partial quotients at the head
of a hyperquadratic expansion, then the resulting expansion is obtained as the
image of the first one by a linear fractional transformation and consequently it
is still hyperquadratic. Moreover, Shmidt [8] and Thakur [9] proved that given
any rational number µ between 2 and q+1, there exist elements of Class I with
their approximation exponents equals to µ and with degree of their algebricity
at most q+1. Thakur [9] had shown that most element of the particulary Class
IA have exponents near 2. Chen [4] has improved this result by studying how
the exponents of such elements are asymptotically distributed with respect to
their heights.

Relying to the present our work, we will study the distribution of the ap-
proximation exponents of a other family of formal power series, belonging to
the Class I\{IA}, with respect to the heights of its elements. The regularity
of their continued fraction expansions allows us to compute the value of their
diophantine approximation exponents. This value will be given in Theorem
2.2. Furthermore, we will describe how the exponents of such elements are
asymptotically distributed with respect to their heights. Precisely, in Theorem



1814 K. AYADI AND I. ELOUAER

2.5 we will prove that most of these elements have exponents very close to 2 as
for elements of Class IA. We begin our results by Theorem 2.1, in which we
will describe explicitly the continued fraction expansion of an element of this
family. For this, we have to introduce a technical lemma. Let Pn/Qn ∈ Fq(T )
such that Pn/Qn := [a1, a2, . . . , an]. For all x ∈ Fq(T ), we will note[

[a1, a2, . . . , an], x
]

:=
Pn
Qn

+
1

x
.

Lemma 1.1. Let a1, . . . , an, x ∈ Fq(T ). We have the following equality:[
[a1, a2, . . . , an], x

]
= [a1, a2, . . . , an, y], where y = (−1)n−1Q−2n x−Qn−1Q−1n .

The proof of this lemma can be found in Lasjaunias’s article [5] page 336.

2. Main results

Theorem 2.1. Let r = pt with an integer t ≥ 1 and n be a fixed positive integer.
Let a1, a2, . . . , an be n polynomials of Fq[T ] with deg ai = di ≥ 1. Let P be a

nonzero polynomial of Fq[T ] such that P divides ar−1i for 1 ≤ i ≤ n. Let ε ∈ F∗q .
If α is the infinite continued fraction expansion α = [a1, a2, . . . , an, αn+1] in
Fq((T−1)) satisfying an equation of the form

αr = Pαn+1 + ε,(2.4)

then the sequence of partial quotients (ai)i≥n+1 of α is defined recursively for
all k ≥ 1 by

an+2k = (−1)kε−1P,

an+2k−1 =

{
ark/P if k is odd;
−ε2ark/P if k is even.

Proof. We have α = a1 + α−12 . Then the equation (2.4) gives that

ar1 − ε
P

+ P−1α−r2 = αn+1,

or

[(ar1 − ε)/P, Pαr2] = αn+1.(2.5)

Since P divides ar−11 , we have (ar1 − ε)/P = [ar1P
−1,−ε−1P ]. Hence from

Lemma (1.1) the equality (2.5) becomes

αn+1 =

[
[ar1P

−1,−ε−1P ], Pαr2] =

[
ar1P

−1,−ε−1P,−ε2α
r
2

P
+

ε

P

]
.

So it follows that

(2.6) an+1 = ar1/P and an+2 = −ε−1P
and

(2.7) αn+3 = −ε2α
r
2

P
+

ε

P
.
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We know that α2 = a2 + α−13 . Then the equation (2.7) gives that

αn+3 = −ε2 a
r
2

P
− ε2

Pαr3
+

ε

P
.

Thus, from Lemma 1.1 and with the same method as previous we get:

(2.8) an+3 = −ε2 a
r
2

P
and an+4 = ε−1P.

Moreover,

αn+5 =
Pαr3

ε2(ε−1P )2
− ε

P
=
αr3
P
− ε

P

or equivalently

(2.9) αr3 = Pαn+5 + ε.

Hence, by (2.6) and (2.8), the initial conditions, i.e., k = 1, stated in the
theorem for the sequence of partial quotients are satisfied. Since (2.9) has the
same shape as (2.4) and observing that P divides ar−1i for n + 1 ≤ i ≤ n + 4,
the proof of the theorem follows by induction. �

Throughout the paper we are dealing with finite sequences (or words), con-
sequently we recall the following notation on sequences in Fq[T ]. Let B =
a1, a2, . . . , an be such a finite sequence, then we set |B| = n for the length of
the word B. If we have two words B1 and B2, then B1, B2 denotes the word
obtained by concatenation. As usual, we denote by [B] ∈ Fq[T ] the finite con-
tinued fraction a1 +1/(a2 +1/(· · · )). We let D(B) be the sum

∑
1≤i≤n deg(ai).

Theorem 2.2. The approximation exponent of the formal power series defined
by Theorem 2.1 is equal to

ν(α) = 2 + max(m1, . . . ,mn),

where for all 1 ≤ j ≤ n

mj =
r(r − 1)dj − degP

r2
j−1∑
k=1

dk + r

n∑
k=j

dk

.

Proof. It follow from the last Theorem that the continued fraction expansion
of α have a regular pattern. By the method described in the proof, every
known partial quotient of α give birth to a pair of partial quotients by the
transformation given by (2.4) or (2.9). For example, for an input a1 we get an
output ar1/P,−ε−1P . We introduce now the following bloc of partial quotients:

For all 1 ≤ l ≤ n, B(l,1) = al, B(l,2) = arl /P,−ε−1P and for all i ≥ 2, B(l,i)

is constructed from B(l,i−1) as the image of its partial quotients, one by one,
by the transformation given by (2.4) and (2.9) respectively. So we get

B(1,1) = a1 −→ B(1,2) = ar1/P,−ε−1P −→ B(1,3) = ar
2

1 P
−r−1,−ε−1P, εP r−1,

ε−1P −→ B(1,4) = ar
3

1 P
−r2−r−1,−ε−1P, εP r−1, ε−1P,−εP r

2−r−1, ε−1P,
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− εP r−1, ε−1P −→ · · · −→ B(1,i) = ar
i−1

1 P−r
i−2−···−r−1,−ε−1P,

. . . ,−εP r
2−r−1, ε−1P,−εP r−1, ε−1P −→ · · · .

The continued fraction expansion of α can be described as follow:

α = [B(1,1), B(2,1), . . . , B(n,1)︸ ︷︷ ︸
C1

, B(1,2), B(2,2), . . . , B(n,2)︸ ︷︷ ︸
C2

, . . . , B(1,i), B(2,i), . . . , B(n,i)︸ ︷︷ ︸
Ci

. . .].
(2.10)

It is clear that |B(l, i)| = 2i−1 and D(B(l, i)) = ri−1 deg al and the degree of
the first quotient partial of B(l, i) is ri−1dl − (1 + r + · · ·+ ri−2) degP . Then
D(Ci) =

∑n
l=1 r

i−1 deg al. Furthermore we have

lim
i

ri−1dl − (1 + r + · · ·+ ri−2) degP∑l−1
j=1D(B(j,i)) +

∑i−1
j=1D(Cj)

= lim
i

(r − 1)ri−1dl + (ri−2 − 1) degP∑l−1
j=1 r

i−1dj +
∑i−1
j=1D(Cj)

= lim
i

(r − 1)ri−1dl + (ri−2 − 1) degP

ri
∑l−1
j=1 dj + ri−1

∑n
j=l dj

=
r(r − 1)dl − degP

r2
l−1∑
j=1

dj + r

n∑
j=l

dj

.

So, according to (1.2), the approximation exponent of α is:

ν(α) = 2 + max

{(
r(r − 1)dl − degP

r2
l−1∑
j=1

dj + r

n∑
j=l

dj

)
1≤l≤n

}
.

�

We will now prove that most of elements satisfying the equation (2.4) have
an approximation exponent close to 2. For this, we need to introduce the
following definitions.

Definition 2.3. Let t be a positive integer and r = pt. We define:

I =

{
α ∈ Fq((T−1))

∣∣α =
Aαr +B

Cαr +D
,A,B,C,D ∈ Fq[T ] and AD −BC 6= 0

}
.

A real algebraic element α is of Class I if α ∈ I for some t ∈ N.
Let t be a fixed positive integer and α ∈ I. We define

H(α) = max(degA,degB, degC, degD),

which is called the height of α. We remark that H(α) is well defined for α ∈ I.
For an integer n ≥ 1, we denote by Ie the subset of continued fraction

expansion α ∈ I defined by

α = [a1, a2, . . . , an, αn+1] and αr = Pαn+1 + ε,

where ε ∈ F∗q and P is a nonzero polynomial of Fq[T ] such that P divides ar−1i

for 1 ≤ i ≤ n.
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For any d ∈ N, we let

Ied = {α ∈ Ie/H(α) ≤ d}.

If α ∈ Ie, then α = [a1, . . . , an, αn+1] where α and αn+1 satisfy (2.4).
Put Pn/Qn = [a1, a2, . . . , an], then from equality (1.1) we deduce easily that

αn+1 = −Qn−1α+Pn−1

Qnα−Pn
. Then the equation (2.4) is equivalent to:

(2.11) Qnα
r+1 − Pnαr − (εQn − PQn−1)α+ εPn − PPn−1 = 0.

Note that α is the unique root of strictly positive degree satisfying this equation
(see [5], Theorem 1, page 332). For this, if we put di = deg ai for 1 ≤ i ≤ n
and degP ≤ dn, we obtain that the height of an element α ∈ Ie is:

H(α) = d1 + · · ·+ dn.

Before giving our next result, we need to introduce the following lemma.

Lemma 2.4 (cf. [1]). For t, s, k1, . . . , kt ∈ N, let

C(t, s) := |{(d1, . . . , dt) ∈ Nt | d1 + · · ·+ dt = s}|
and

C(k1, k2, . . . , kt, t, s) := |{(d1, . . . , dt) ∈ Nt | d1 + · · ·+ dt = s; di ≥ ki}|.
By the theory of binomial coefficient,

C(t, s) =

(
s− 1

t− 1

)
and

C(k1, k2, . . . , kt, t, s) =

(
s+ t− (k1 + · · ·+ kt)− 1

t− 1

)
.

Theorem 2.5. The approximation exponent of the formal power series defined
by Theorem 2.1 such that degP ≤ dn is near 2.

Before giving the proof of Theorem 2.5, we should note that for n = 1, the
value of the approximation exponent of α defined by Theorem 2.1 is ν(α) =
r+ 1− (degP/rd1). By an easy calculation, we can see that ν(α) > r+ (1/r).
So we exclude this case from this theorem.

Proof of Theorem 2.5. For n ∈ N∗, let:

Pn =

{
(a1, a2, . . . , an) | ai ∈ Fq[T ]\Fq for i = 1, . . . , n

}
,

Pn(d) =

{
(a1, a2, . . . , an) ∈ Pn |

n∑
i=1

di ≤ d
}
.

Let T (d) the cardinal of Pn(d). Without loss of generality, we consider T (d)
as the cardinal of (Ied). In fact, for a given polynomial P we can construct
infinitely n-uplet of nonzero polynomials (a1, a2, . . . , an) such that P divides
ar−1i for 1 ≤ i ≤ n.
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We can replace counting the number of elements of α ∈ Ied by counting the
number of elements in

T = {(n, a1, . . . , an) | n ∈ N, ai ∈ Fq[T ] with

n∑
i=1

deg ai ≤ d}.

For fixed number of base terms n and fixed positive integers d1, . . . , dn, the
number of polynomials ai ∈ Fq[T ] with deg ai = di is qdi+1 − qdi , hence we
have for d1, . . . , dn ∈ N, the numbers of α ∈ T (d) such that α ∈ Ied is

(2.12) (qd1+1 − qd1) · · · (qdn+1 − qdn) = (q − 1)nqd1+···+dn = (q − 1)nqH(α).

On the other hand, for fixed n,D ∈ N and from Lemma 2.4, the numbers of
the set

N(n,D) := {(d1, . . . , dn) ∈ Nn | d1 + · · ·+ dn = D}
is

(2.13) |N(n,D)| = C(n,D) =

(
D − 1
n− 1

)
.

Combining (2.12) and (2.13), we conclude that for fixed n,D ∈ N, there are

(q − 1)nqD
(
D − 1
n− 1

)
elements α such that α ∈ Ied and H(α) = D.

Hence by considering all D ≤ d and n ≤ D, we have

T (d) =

d∑
D=1

D∑
n=1

(q − 1)nqD
(
D − 1
n− 1

)

= (q − 1)

d∑
D=1

qD(1 + q − 1)D−1

= (q − 1)

d∑
D=1

q2D−1

=
q2d − 1

q(q + 1)
.

On the other hand, let sm(d) =

{
α ∈ Ied |H(α) ≤ d,m < ν(α) ≤ r−1

}
and

Sm(d) the cardinality of sm(d). Then we can replace counting the number of
elements of α ∈ sm(d) by counting the number of elements in

S = {(n, a1, . . . , an) ∈ T | 2 + max{m1, . . . ,mn} > m}.
We have the condition on di’s as follows:

ν(α) > m

⇔ 2 + max{m1, . . . ,mn} > m
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⇔ mj =
r(r − 1)dj − degP

r2(d1 + · · ·+ dj−1) + r(dj + · · ·+ dn)
> m− 2 for some j

⇔ dj >
(m− 2)D

r − 1
+ (m− 2)(d1 + · · ·+ dj−1) +

degP

r(r − 1)
for some j,

where D = d1 + · · ·+ dn = H(α). Note that [·] is the floor function.

Since (m−2)H(α)
r−1 + (m − 2)(d1 + · · · + dj−1) + degP

r(r−1) ≥ [ (m−2)H(α)
r−1 ] + (m −

2)(j − 1) and to get an upper bounded of Sm(d) we consider a bigger set

{dj > [
(m− 2)H(α)

r − 1
] + (m− 2)(j − 1)}.

To ease the notation, we define

f(D, j) := [
(m− 2)D

r − 1
] + (m− 2)(j − 1).

From Lemma 2.4 and for n,D, j ∈ N, the number of elements in the set

Nn,D,j := {(d1, . . . , dn) ∈ Nn | d1 + · · ·+ dk = D, dj > f(D, j)}
is

|Nn,D,j | = C(k1, . . . , kn, n,D)

=

(
D − [

(m− 2)D

r − 1
]− (m− 2)(j − 1)− 1

n− 1

)
,

where ki = 1 if i 6= j and kj = [ (m−2)H(α)
r−1 ] + (m− 2)(j − 1) + 1. Combine the

result above and the same argument in the proof of T (d), we conclude that for
n,D ∈ N with D ≤ d, the number of elements α ∈ sm(d) such that α has n
base terms and

H(α) = D, ν(α) > m

is less than

qD(q − 1)n
n∑
j=1

(
D − [

(m− 2)D

r − 1
]− (m− 2)(j − 1)− 1

n− 1

)
.

Hence by considering all D ≤ d, we have

Sm(d) ≤
d∑

D=1

D∑
n=1

qD(q − 1)n
n∑
j=1

(
D − [

(m− 2)D

r − 1
]− (m− 2)(j − 1)− 1

n− 1

)

≤
D∑
n=1

qD(q − 1)

D∑
j=1

D∑
n=1

(q − 1)n−1
(
D − [

(m− 2)D

r − 1
]− (m− 2)(j − 1)− 1

n− 1

)

≤
d∑

D=1

qD(q − 1)

D∑
j=1

q
D− [

(m− 2)D

r − 1
]− (m− 2)(j − 1)− 1
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= (q − 1)

d∑
D=1

q
2D− [

(m− 2)D

r − 1
]− 1 D∑

j=1

q−(m−2)(j−1)

≤ (q − 1)

d∑
D=1

2q
2D− [

(m− 2)D

r − 1
]− 1

≤ (q − 1)

d∑
D=1

2q
2D−

(m− 2)D

r − 1

=
2(q − 1)q

2−
m− 2

r − 1 (q(2−
m−2
r−1 )d − 1)

q2−
m−2
r−1 − 1

≤ 4(q − 1)q
(2−

m− 2

r − 1
)d
.

On the other hand, by the fact that sm(d) contains a subset

{α ∈ sm(d) | d1 >
(m− 2)D

r − 1
} = {α ∈ sm(d) | d1 ≥ [

(m− 2)D

r − 1
] + 1}.

Hence we have

Sm(d) ≥
d∑

D=1

D∑
n=1

qD(q − 1)nC([
(m− 2)D

r − 1
] + 1, 1, . . . , 1, n,D)

= (q − 1)

d∑
D=1

D∑
n=1

qD(q − 1)n−1
(
D − [

(m− 2)D

r − 1
]− 1

n− 1

)
.

Observe that if

D ≥ 1

1− m− 2

r − 1

,

then

D ≥ (m− 2)D

r − 1
+ 1 ≥ [

(m− 2)D

r − 1
] + 1.

Hence

Sm(d) ≥ (q − 1)

d∑
D≥

1

1− m−2
r−1

D∑
n=1

qD(q − 1)n−1
(
D − [ (m−2)Dr−1 ]− 1

n− 1

)

= (q − 1)

d∑
D≥

1

1− m−2
r−1

qDqD−[
(m−2)D

r−1 ]−1
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≥ (q − 1)

d∑
D≥

1

1− m−2
r−1

q2D−
(m−2)D

r−1 −1.

Since

lim
d→∞

∑
D< 1

1−m−2
r−1

q2D−
(m−2)D

r−1 −1

∑d
D=1 q

2D− (m−2)D
r−1 −1

= 0

for d large enough, we have

Sm(d) ≥ 1

2
(q − 1)

d∑
D=1

q2D−
(m−2)D

r−1 −1

=
(q − 1)q2−

m−2
r−1 (q(2−

m−2
r−1 )d − 1)

2q(q2−
m−2
r−1 − 1)

≥ 1

2q
(q(2−

m−2
r−1 )d − 1).

Then we prove that

1

2q
(q(2−

m−2
r−1 )d − 1) ≤ Sm(d) ≤ 4(q − 1)q(2−

m−2
r−1 )d.

So we obtain that

lim
d−→∞

|Ied,m|
|Ied |

= lim
d−→∞

Sm(d)

T (d)
= 0,

which equivalent to

lim
d−→∞

|{α ∈ Ied |ν(α) ≤ m|}
|Ied |

= 1.

So we conclude that for any given real number ε > 0, “most” element in Ie

have approximation exponent bounded by 2 + ε. �
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