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INVERSION OF THE CLASSICAL RADON TRANSFORM

ON Zn
p

Yung Duk Cho, Jong Yoon Hyun, and Sunghwan Moon

Abstract. The Radon transform introduced by J. Radon in 1917 is the

integral transform which is widely applicable to tomography. Here we
study the discrete version of the Radon transform. More precisely, when

C(Zn
p ) is the set of complex-valued functions on Zn

p . We completely de-

termine the subset of C(Zn
p ) whose elements can be recovered from its

Radon transform on Zn
p .

1. Introduction

In 1917, Johan Radon introduced and studied a transform that integrates
a function over all hyperplanes; later this transform has become known as the
(classical) Radon transform. He gave an explicit inversion formula of how to
reconstruct a function f from its integrals. This Radon transform is useful in
Computed Axial Tomography (CAT scan), barcode scanners, reflection seis-
mology, and in the solution of hyperbolic partial differential equations.

Perceiving many applications of the Radon transform initiated the research
of generalizations of Radon transforms using various sets of integration includ-
ing sphere [1–3,7,19], ellipsoids [13,18], and cone [11,12,14]. See also [10,15–17]
for monographs studying general classes of Radon transforms.

As one of the topics of generalizations of the Radon transform, the Radon-
type transform of a continuous function f defined by

RSf(u) =

∫
Rn
f(u− x)φS(x)dx, u = (u1, u2, . . . , un) ∈ Rn (n ≥ 2),

is introduced. Here S is a compact subset of Rn and φS is the characteristic
function of S. Especially, when S is a sphere, we call RSf the spherical Radon
transform [7,19].
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Let G be a finite group and let C(G) be the space of complex-valued functions
on G. For f ∈ C(G) and a subset S of G, we define

(1) f∗S(u) =
∑
x∈G

f(x)φS(u− x), u ∈ G.

In [6] Diaconis and Graham called f∗S the Radon transform of f on G = Zn
2 , the

group of binary n-tuples. They examined for which subsets S are the Radon
transform f∗S invertible and derived the inversion formula when S satisfies a
certain condition giving the injectivity of f∗S . In [9], Frankl and Graham pro-
vided a characterization for when f∗S on Zn

p , p being a prime, determines f
uniquely. Fill [8] also discussed the uniqueness and an inversion of f∗S when
G = Zk, the group of integers modulo k. DeDeo and Velasquez [5] derived the
inversion of f∗S when G = Zn

k , the group of n-tuples of the integers modulo
k. The transforms dealt in [5, 6, 8], however, seem to be closely related to the
spherical Radon transform RSf .

Let f be a integrable function on Rn (n ≥ 2). We introduce the classical
Radon transform Rf with hyperplanes of integration defined by

Rf(u, s) =

∫
Rn−1

f(x,u·x+s)dx for (u, s)=(u1, u2, . . . , un−1, s) ∈ Rn−1×R.1

The classical Radon transform is a powerful tool for many image processing
and machine vision applications (see [4]). However, the continuous version
of the Radon transform encounters the difficulties when applying it to discrete
images. It is desirable for a discrete version of the Radon transform to facilitate
the realization in general image processing application.

The discrete version of the Radon transform of a complex-valued function
f on V = Zn−1

p × Zp is a linear operator from C(V ), the set of complex-valued
functions to itself defined by

Rf(x, y) =
∑

u∈Zn−1
p

f(u,u · x + y).

Notice that Rf can not be covered by f∗S defined in (1). Let us define the dual
operator R# of the Radon transform R by

R#f(x, y) =
∑

u∈Zn−1
p

f(u, y − u · x) = Rf(−x, y).

Then by simple computation, we have∑
s∈Zp

∑
u∈Zn−1

p

Rf(u, s)g(u, s) =
∑

x∈Zn−1
p

∑
y∈Zp

f(x, y)R#g(x, y).

1To tell the true, the classical Radon transform is usually defined by

Rf(θ, s)=

∫
θ⊥

f(sθ + τ )dτ for (θ, s) ∈ Sn−1 × R.

In view of the integration area, both are the same. Boris Rubin calls Rf the transversal

Radon transform in [17].
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The aim of this paper is to find out completely the subset of C(V ) whose
elements can be reconstructed from Rf .

We are now in a position to state the main result and the proof is given in
the next section.

Theorem 1. Let R be the Radon transform from C(V ) to itself. Then f is in

Im(R) generated by {ζ(u,s)
p : (u, s) is (0, 0) or in Zn−1

p × Z∗p} if and only if

f(x, y) = (p−n − p−1)
∑
s∈Zp

Rf(0, s) + p1−nR#Rf(x, y) for any (x, y) ∈ V.

Next section is devoted to the proof of Theorem 1. To prove the theorem, we
start with the analogue of the Fourier slice theorem because it plays a critical
role to find the inversion formula in the continuous version. Then we describe
the image and kernel of the Radon transform.

1.1. Preliminaries

The inner product of f and g in C(V ) is defined by

〈f, g〉 =
∑

(x,y)∈V

f(x, y)g(x, y),

where the bar denotes the complex conjugation. It is known that {ζ(u,s)
p :

(u, s) ∈ Zn
p} is an orthogonal basis for C(V ), where ζp = e

2πi
p is a primitive

p-th root of unity and ζ
(u,s)
p (x, y) = ζ

(u,s)·(x,y)
p with the dot being the usual

inner product.
For a complex-valued function f on V , the Fourier transform of f with

respect to (u, s) in V and its inversion are defined by

Ff(x, y)=
∑

(u,s)∈V

ζ(u,s)·(x,y)
p f(u, s), f(u, s)=p−n

∑
(x,y)∈V

ζ−(x,y)·(u,s)
p Ff(x, y).

The partial Fourier transform of f with respect to the last variable in Zp is
defined by Fsf(x, y) =

∑
s∈Zp f(x, s)ζsyp .

2. Proof of Theorem 1

We start by proving an analogue of the Fourier slice theorem.

Lemma 2. Let R be the Radon transform from C(V ) to itself and f in C(V ).
Then we have

Fs(Rf)(x, y) = Ff(−yx, y)

for any (x, y) in V .

Proof. We see that

Fs(Rf)(x, y) =
∑
t∈Zp

(Rf)(x, t)ζtyp =
∑
t∈Zp

∑
u∈Zn−1

p

f(u,x · u + t)ζtyp
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=
∑

u∈Zn−1
p

ζ−yu·xp

∑
t∈Zp

f(u,x · u + t)ζy(t+u·x)
p

=
∑

u∈Zn−1
p

ζ−yx·up

∑
s∈Zp

f(u, s)ζysp = Ff(−yx, y).

�

We present basic properties of the Fourier and Radon transforms on V .

Lemma 3. Let f be in C(V ). Then we have

(i)
∑

u∈Zn−1
p
Ff(u, 0)ζ−x·up = pn−1

∑
ȳ∈Zp

f(x, ȳ) and

Ff(0, 0) =
∑

(x̄,ȳ)∈V f(x̄, ȳ),

(ii)
∑

u∈Zn−1
p
Fs(Rf)(u, 0) = pn−1Ff(0, 0) = pn−1

∑
(x̄,ȳ)∈V f(x̄, ȳ),

(iii) R#Rf(x, y) = p−1
∑

(u,s)∈V ζ
−s(−u,1)·(x,y)
p Fs(Rf)(u, s).

Proof. The result (i) is straightforward because of the definition of Ff and the
result (ii) follows from using Ff(0, 0) = Fs(Rf)(u, 0) for any u ∈ Zn−1

p by
Lemma 2. For (iii), we see that

R#Rf(x, y) = R#
∑

u∈Zn−1
p

f(u,u · x + y)

=
∑

u∈Zn−1
p

R#f(u,u · x + y)

=
∑

u,v∈Zn−1
p

f(v,u · v + y − u · x)

=
∑

u,v∈Zn−1
p

∑
t∈Zp

f(v,u · v + t)δy−u·x,t

= p−1
∑

u,v∈Zn−1
p

∑
t∈Zp

f(v,u · v + t)
∑
s∈Zp

ζs(u·x−y+t)
p

= p−1
∑

(u,s)∈V

ζs(u·x−y)
p

∑
t∈Zp

∑
v∈Zn−1

p

f(v,u · v + t)ζstp

= p−1
∑

(u,s)∈V

ζs(u·x−y)
p Fs(Rf)(u, s),

where δs,t is the Kronecker delta function. �

In the following proposition, we describe the image and kernel of the Radon
transform which play a crucial role in proving our main result.

Proposition 4. Let R be the Radon transform from C(V ) to itself. Then we
have

(i) Im(R) =
{
f ∈ C(V ) :

∑
y∈Zp f(x, y) is a constant for any x ∈ Zn−1

p

}
and
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(ii) Ker(R) = {f(x, y)− p1−n ∑
x̄∈Zn−1

p
f(x̄, y) : f(x, y) ∈ C(V ) does not

depend on y ∈ Zp}.

Proof. (i) LetA =
{
g ∈ C(V ) :

∑
s∈Zp g(u, s) is a constant for any u ∈ Zn−1

p

}
.

Since ∑
s∈Zp

Rf(u, s) =
∑
s∈Zp

∑
x∈Zn−1

p

f(x,x · u + s)

=
∑

x∈Zn−1
p

∑
s∈Zp

f(x,x · u + s) =
∑

x∈Zn−1
p

∑
s∈Zp

f(x, s),

we have Im(R) ⊆ A. Let g ∈ A and u ∈ Zn−1
p be fixed. We claim that∑

v∈Zn−1
p \{u}

∑
x∈Zn−1

p
g(v, (u− v) · x + s) is a constant on any s in Zp. This

term can be written as∑
v∈Zn−1

p \{u}
vn−1 6=un−1

∑
(x1,...,xn−2)∈Zn−2

p

∑
xn−1∈Zp

g

v,

n−2∑
j=1

(uj − vj) · xj + xn−1(un−1 − vn−1) + s



+
∑

v∈Zn−1
p \{u}

vn−1=un−1

∑
x̃m∈Zn−2

p

∑
xm∈Zp

g

v,
∑

j∈{1,2,...,n−1},j 6=m

(uj − vj) · xj+ xm(um − vm)+ s


=

∑
v∈Zn−1

p \{u}
vn−1 6=un−1

∑
(x1,...,xn−2)∈Zn−2

p

∑
xn−1∈Zp

g (v, xn−1) +
∑

v∈Zn−1
p \{u}

vn−1=un−1

∑
x̃m∈Zn−2

p

∑
xm∈Zp

g (v, xm),

where m∈{1, 2, . . . , n−2} is chosen such that vm 6=um and x̃m =(x1, . . . , xm−1,
xm+1, . . . , xn−1). Since g is in A, the term should be a constant.

Now we can set

(2) C = p1−n
∑

v∈Zn−1
p \{u}

∑
x∈Zn−1

p

g(v, (u− v) · x + s)

and set f = p1−n(R#g−C). It is now sufficient to prove that Rf = g. We see
that

Rf(u, s) = p1−nRR#g(u, s)− C

= p1−n
∑

x∈Zn−1
p

∑
v∈Zn−1

p

g(v, (u · x + s)− v · x)− C

= p1−n
∑

v∈Zn−1
p

∑
x∈Zn−1

p

g(v, (u− v) · x + s)− C

= p1−n
∑

x∈Zn−1
p

g(u, s) + p1−n
∑

v∈Zn−1
p \{u}

∑
x∈Zn−1

p

g(v, (u−v) · x+s)−C

= g(u, s)

by the definition (2) of C. Thus A ⊆ Im(R) and the proof is complete.
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(ii) Let B = {f(x, y)− p1−n ∑
x̄∈Zn−1

p
f(x̄, y) : f(x, y) does not depend on y

∈ Zp} be the subspace of C(V ). We start with the inverse Fourier transform:

f(x, y) = p−n
∑

(u,s)∈V

ζ−(u,s)·(x,y)
p Ff(u, s)

= p−n


∑

u∈Zn−1
p

Ff(u, 0)ζ−x·up − pn−1Ff(0, 0) + pn−1Ff(0, 0)

+
∑
s∈Z∗p

∑
u∈Zn−1

p

ζ−(u,s)·(x,y)
p Ff(u, s)



= p−n


pn−1

∑
ȳ∈Zp

f(x, ȳ)− pn−1
∑

(x̄,ȳ)∈V

f(x̄, ȳ) +
∑

u∈Zn−1
p

Fs(Rf)(u, 0)

+
∑

(u,s)∈Zn−1
p ×Z∗p

ζ−s(−u,1)·(x,y)
p Ff(−su, s)

,
where we used Lemma 3 in the last equality. Applying Lemma 2 to the last
term right above, we obtain

f(x, y) = p−1

∑
ȳ∈Zp

f(x, ȳ)−
∑

(x̄,ȳ)∈V

f(x̄, ȳ)


+ p−n

∑
(u,s)∈V

ζ−s(−u,1)·(x,y)
p Fs(Rf)(u, s).

By Lemma 3(iii), we obtain

f(x, y) = p−1

∑
ȳ∈Zp

f(x, ȳ)−
∑

(x̄,ȳ)∈V

f(x̄, ȳ)

 + p1−nR#Rf(x, y).(3)

We see that ∑
ȳ∈Zp

f(x, ȳ)− p1−n
∑

x̄∈Zn−1
p

∑
ȳ∈Zp

f(x̄, ȳ)

is in B because
∑

ȳ∈Zp
f(x, ȳ) does not depend on y. It then follows from∑

ȳ∈Zp Rf(0, ȳ) =
∑

(x̄,ȳ)∈V f(x̄, ȳ) that (3) can be written as

f(x, y) +B = (p−n − p−1)
∑

(x̄,ȳ)∈V

f(x̄, ȳ) + p1−nR#Rf(x, y) +B

= (p−n − p−1)
∑
ȳ∈Zp

Rf(0, ȳ) + p1−nR#Rf(x, y) +B in C(V )/B.(4)

Now let f ∈ Ker(R). Then Rf = 0. By (4), we have f +B = B. This implies
that Ker(R) ⊆ B. Conversely, let g(x, y) = f(x, y)−p1−n ∑

x̄∈Zn−1
p

f(x̄, y) be in

B, where f(x, y) does not depend on y in Zp. Then Rf(u, s) =
∑

x∈Zn−1
p

f(x, y)

is a constant, and so Rg(u, s) =
∑

x∈Zn−1
p

f(x, y)−
∑

x̄∈Zn−1
p

f(x̄, y) = 0. Thus

g is in Ker(R) and so B ⊆ Ker(R). The proof is completed. �
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We notice that C(V )/Ker(R) and Im(R) are isomorphic via f + Ker(R) 7→
Rf (by the first isomorphism theorem).

Corollary 5. Let R be the Radon transform from C(V ) to itself. Then we have

(i) Im(R) is generated by {ζ(u,s)
p : (u, s) is (0, 0) or in Zn−1

p × Z∗p} and
(ii) Ker(R) is generated by {ζ(u,0)

p − p1−n ∑
v∈Zn−1

p
ζ

(v,0)
p : 0 6= u ∈ Zn−1

p }.

Proof. One can easily verify that {ζ(u,s)
p (x, y) : (u, s) is (0, 0) or in Zn−1

p ×Z∗p}
is a subset of Im(R). It follows from Proposition 4(i) that the dimension of
Im(R) is at least pn−1(p− 1) + 1. We claim that

(5)

ζ(u,0)
p (x, y)− p1−n

∑
x̄∈Zn−1

p

ζ(u,0)
p (x̄, y) : u ∈ Zn−1

p \{0}

 ,

where 0 is the zero-vector in Zn−1
p , is the set of linearly independent functions.

Assume that ∑
u∈Zn−1

p \{0}

au

ζ(u,0)
p (x, y)− p1−n

∑
x̄∈Zn−1

p

ζ(u,0)
p (x̄, y)

 = 0,

where au ∈ C. Then we have

0 =
∑

u∈Zn−1
p \{0}

au

ζu·xp − p1−n
∑

x̄∈Zn−1
p

ζ x̄·up

 =
∑

u∈Zn−1
p \{0}

auζ
u·x
p

for any x in Zn−1
p , and so

∑
u∈Zn−1

p \{0} auζ
u·x
p = 0 for any x in Zn−1

p . By

defining a0 = 0, we obtain that au = 0 for any u in Zn−1
p . This proves

our claim. It is obvious that the set in (5) is a subset of Ker(R) because

ζ
(u,0)
p (x, y) = ζu·xp does not depend on y. It follows from Proposition 4(ii)

that the dimension of Ker(R) is at least pn−1 − 1. By the isomorphism of
C(V )/Ker(R) and Im(R), we obtain that pn − dim(Ker(R)) = dim(Im(R)) ≥
pn−1(p − 1) + 1, or dim(Ker(R)) ≤ pn−1 − 1. Thus dim(Ker(R)) = pn−1 − 1
and dim(Im(R)) = pn−1(p− 1) + 1. The proof is completed. �

We are ready to prove our main result.

Proof of Theorem 1. (Sufficiency) Let f be in Im(R). Then
∑

y∈Zp
f(x, y)

is a constant for any x in Zn−1
p by Proposition 4(i), and so

∑
ȳ∈Zp

f(x, ȳ) =

p1−n ∑
(x̄,ȳ)∈V f(x̄, ȳ). It then follows from (3) that

f(x, y) = p−1

∑
ȳ∈Zp

f(x, ȳ)−
∑

(x̄,ȳ)∈V

f(x̄, ȳ)

 + p1−nR#Rf(x, y)

= (p−n − p−1)
∑

(x̄,ȳ)∈V

f(x̄, ȳ) + p1−nR#Rf(x, y).
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The result follows from
∑

ȳ∈Zp Rf(0, ȳ) =
∑

(x̄,ȳ)∈V f(x̄, ȳ).

(Necessity) Let f(x, y) = (p−n − p−1)
∑

s∈Zp Rf(0, s) + p1−nR#Rf(x, y).

Recall from the proof of Proposition 4(i) that
∑

y∈Zp Rf(x, y) is a constant for

any x in Zn−1
p , and so is

∑
y∈Zp R

#Rf(x, y) because R#f(x, y) = Rf(−x, y).

By Proposition 4, it is sufficient to show that
∑

y∈Zp f(x, y) is a constant for

any x in Zn−1
p . We now have that

∑
y∈Zp

f(x, y) = p(p−n − p−1)
∑
y∈Zp

Rf(0, y) + p1−nR#

∑
y∈Zp

Rf(x, y)


is a constant for any x in Zn−1

p and the proof is completed. �
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