
Bull. Korean Math. Soc. 55 (2018), No. 6, pp. 1667–1690

https://doi.org/10.4134/BKMS.b170948

pISSN: 1015-8634 / eISSN: 2234-3016

ON THE MINIMUM ORDER OF 4-LAZY COPS-WIN

GRAPHS
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Abstract. We consider the minimum order of a graph G with a given

lazy cop number cL(G). Sullivan, Townsend and Werzanski [7] showed
that the minimum order of a connected graph with lazy cop number

3 is 9 and K32K3 is the unique graph on nine vertices which requires

three lazy cops. They conjectured that for a graph G on n vertices with
∆(G) ≥ n − k2, cL(G) ≤ k. We proved that the conjecture is true for

k = 4. Furthermore, we showed that the Petersen graph is the unique
connected graph G on 10 vertices with ∆(G) ≤ 3 having lazy cop number

3 and the minimum order of a connected graph with lazy cop number 4

is 16.

1. Introduction

The game of Cops and Robbers is a well-known two-player game played
on a finite connected undirected graph. It was independently introduced by
Quilliot [6], and by Nowakowski and Winkler [4]. The first player occupies
some vertices with some number of cops (multiple cops may occupy a single
vertex) and the second player occupies a vertex with a single robber. After
that they move alternately along the edges of the graph. On the cops’ turn,
each of the cops may remain stationary or move to an adjacent vertex. On
the robber’s turn, he may remain stationary or move to an adjacent vertex. A
round of the game is a cop move together with the subsequent robber move.
The cops win if after a finite number of rounds, one of them can move to catch
the robber, that is, the cop and the robber occupy the same vertex.

The main object of study in the game of Cops and Robbers on a graph G
is the cop number c(G), the minimum number of cops required to catch the
robber, introduced by Aigner and Fromme [1]. For a fixed positive integer k, we
say a graph G is k−cop−win if c(G) = k. For example, a path is 1-cop-win and
the Petersen graph is 3-cop-win [2]. We define Mk to be the minimum order of
a connected k-cop-win graph and mk to be the minimum order of a connected
graph G satisfying c(G) ≥ k. Clearly, we have mk ≤ Mk. The exact values
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of these parameters are only known for first three values of k. Baird et al. [2]
showed that m1 = M1 = 1, m2 = M2 = 4 and m3 = M3 = 10. Moreover,
they proved that the Petersen graph is the unique 3-cop-win graph with order
10. They also used a computer search to calculate the cop number of every
connected graph on 10 or fewer vertices. They performed this categorization
by checking for cop-win orderings [4] and using an algorithm provided in [3].

We are interested in a variant of cops and robber introduced by Offner and
Ojakian [5], where at most one cop moves in any round. It is called the game
of Lazy Cops and Robbers and the lazy cop number is the minimum number
of cops required to catch the robber in this setting. We write cL(G) for the
lazy cop number of a graph G. Let Pn and Cn be the n-path and n-cycle,
respectively. It is straightforward that c(Pn) = cL(Pn) = 1 = c(C3) = cL(C3)
for n ≥ 1 and c(Cn) = cL(Cn) = 2 for n ≥ 4. A graph satisfying cL(G) = k
is k-lazy cop-win. Define M l

k to be the minimum order of a connected k-lazy
cop-win graph and define ml

k to be the minimum order of a connected graph
G with cL(G) ≥ k. It is easy to see that ml

1 = M l
1 = 1. For k = 2, we must

have ml
2 = M l

2 = 4 since the only connected graphs with three vertices are P3

and C3, both of which are 1-lazy cop-win graphs.
For a graph G, the degree of a vertex u ∈ V (G) is denoted as degG(u). The

minimum degree and the maximum degree of G are denoted as δ(G) and ∆(G),
respectively. Given two graphs G and H, their Cartesian product G2H is a
graph with vertex set V (G) × V (H) and two vertices (u1, v1) and (u2, v2) are
adjacent in G2H if and only if either

(i) u1 = u2 and v1 is adjacent to v2 in H, or
(ii) v1 = v2 and u1 is adjacent to u2 in G.

Sullivan, Townsend and Werzanski [7] proved that for the game of lazy cops
and robber, K32K3 is the unique 3-lazy cop-win graph on nine vertices. In
addition, all other graphs on 9 or fewer vertices have lazy cop number at most
two. Hence ml

3 = M l
3 = 9. They also showed that cL(Kn2Kn) = n and

interestingly, noted that Kn2Kn can be interpreted as an n × n grid with
edges representing a Rook’s move in chess. Furthermore, they conjectured
that for a graph G on n vertices with ∆(G) ≥ n−k2, we must have cL(G) ≤ k.
In this paper, we compute the exact values for ml

4 and M l
4 and prove some

related results, including the above conjecture for the case k = 4 (see Corollary
4.7).

Theorem 1.1. If G is a connected graph with 10 vertices and ∆(G) ≤ 3, then
cL(G) ≤ 3. Furthermore, equality holds if and only if G is the Petersen graph.

Theorem 1.2. If G is a connected graph with at most 15 vertices, then cL(G) ≤
3.

The exact values for ml
4 and M l

4 can be deduced easily from Theorem 1.2
and the fact that K42K4 is a 4-lazy cop-win graph [7].

Corollary 1.3. ml
4 = M l

4 = 16.
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Given a vertex v ∈ V (G), its neighborhood NG(v) is the set {u ∈ V (G) |
uv ∈ E(G)} and NG[v] is the set {v} ∪ NG(v). Furthermore, for any subset
U ⊆ V (G), NG(U) =

⋃
u∈U NG(u) and NG[U ] =

⋃
u∈U NG[u]. We write

neighborhood of the vertex set U = {v1, v2, v3, . . . , vi} as NG[v1, v2, v3, . . . , vi].
If the graph in question is clear, we shall write N(v), N [v], N(U), N [U ] and
N [v1, v2, v3, . . . , vi]. A vertex occupied by a cop or robber is also called a
position.

Let the cops ci, i = 1, 2, . . . , be at our disposal to play on a graph G. A
winning strategy of the cops on G refers to a set of instructions for the cops ci,
i = 1, 2, . . . , if followed, guarantees that the cops can win any game played on
G, regardless of how the robber r moves throughout the game. If e is a cop or
a robber and is at position u ∈ V (G), we shall write NG(e) instead of NG(u).
Similarly, NG[e] = NG[u].

When we say a cop c moves one step at a time to a vertex w, we mean that
c will move towards w in all cop’s turn regardless of the movement of r in each
robber’s turn. So c will occupy w in finite steps.

Lemma 1.4 ([7, Theorem 2.5]). Assume G = (V,E) has a vertex v ∈ V with
deg(v) = 1; say uv ∈ E is the unique edge incident to v. Define G′ to be
the graph with vertex set V ′ = V − {v} and edge set E′ = E − {uv}. Then
cL(G′) = cL(G).

By virtue of Lemma 1.4, we may ignore graphs that have a vertex of degree
1. By removing vertices of degree 1, we obtain a graph with the same lazy cop
number but with smaller number of vertices.

In Section 2, we will show that cL(P (n, 2)) = 3 for n ≥ 5 (Lemma 2.1). This
result is of interest on its own. Then we prove Theorem 1.1 and Theorem 1.2
in Section 3 and Section 4 respectively.

2. cL(P (n, 2))

The generalized Petersen graph P (n, 2) is the graph with vertex set

V (P (n, 2)) = {u1, . . . , un, v1, . . . , vn}
and edge set

E(P (n, 2)) = {uivi, uiui+1, vivi+2 : i ≥ 1},

where the subscripts are taken modulo n. Note that P (5, 2) is the Petersen
graph.

Lemma 2.1. For P (n, 2) of girth ≥ 5, we have cL(P (n, 2)) = 3.

Proof. [1] shows that for any graph G with girth at least 5, c(G) ≥ δ(G). Since
P (n, 2) is 3-regular and c(G) ≤ cL(G) (see [8]), this indicates that cL(P (n, 2)) ≥
3.

Now, it is left to show that cL(P (n, 2)) ≤ 3. Here we describe a winning
strategy for three cops. Suppose we have 3 cops at our disposal, say c1, c2 and
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c3. The robber will be denoted by r. If at round t, the robber is at position uj
or vj , we set Wt(r) = j. We do the same for the cop ci. We may consider Wt

as a weight of a cop or the robber at round t.
Initially we place c1 at position un, c2 at position v1 and c3 at position v2

(see Figure 1).

un−1 un u1 u2 u3

vn−1 vn v1 v2 v3

Figure 1

Therefore W1(c1) = n, W1(c2) = 1 and W1(c3) = 2. Note that r cannot be
placed at positions {u1, v1, u2, v2, v3, un−1, un, vn−1, vn}. So, initially we must
have

max (W1(c2),W1(c3)) = 2 < W1(r) < n− 1 = W1(c1)− 1,

and W1(c2) and W1(c3) are consecutive integers. The size of the interval that
W1(r) can lie within is W1(c1)− 1−max (W1(c2),W1(c3)) = n− 3.

We prove this by induction on t. Suppose that at round t, we have

max (Wt(c2),Wt(c3)) < Wt(r) < Wt(c1)− 1,

and Wt(c2) and Wt(c3) are consecutive integers. The size of the interval that
Wt(r) can lie within is s = Wt(c1) − 1 −max (Wt(c2),Wt(c3)). Now we shall
give a strategy depending on the value of Wt(r) that will reduce the size of the
interval that Wt+1(r) can lie within.

z a x c1

w b y d

Figure 2

Scenario 1. Suppose Wt(r) = Wt(c1)− 3 (see Figure 2). So r is at position z
or w. We move the cop c1 to position x. At robber’s turn, if r is at position z,
he cannot move to a, otherwise he will be caught in the next round. Similarly,
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if r is at position w, he cannot move to y. Thus, at round t + 1, we must
have Wt+1(r) < Wt+1(c1) − 1 = Wt(c1) − 2. Note that Wt+1(c2) = Wt(c2),
Wt+1(c3) = Wt(c3) and Wt+1(r) = Wt(r),Wt(r)−1 or Wt(r)−2. So, Wt+1(c2)
and Wt+1(c3) are still consecutive integers. We now consider two cases.

First, we suppose Wt+1(r) > max (Wt+1(c2),Wt+1(c3)), then we have achie-
ved our objective for the size of the interval that Wt+1(r) can lie within is
Wt+1(c1)−1−max (Wt+1(c2),Wt+1(c3)) = Wt(c1)−2−max (Wt(c2),Wt(c3)) =
s− 1. Recall that the size of the interval that Wt(r) can lie within is s.

Next, we suppose Wt+1(r) ≤ max (Wt+1(c2),Wt+1(c3)). We may assume
that Wt+1(c2) = Wt+1(c3) − 1 because Wt+1(c2) and Wt+1(c3) are consecu-
tive integers. Since max (Wt(c2),Wt(c3)) < Wt(r), this can only happen if
Wt+1(r) = Wt(r) − 1 or Wt(r) − 2. If Wt+1(r) = Wt(r) − 2, then r must be
at position w or f at round t (see Figure 3), and at his turn, he moves to the
position a cop is occupying. This is absurd. If Wt+1(r) = Wt(r) − 1, then r
must be at position z at round t, and at his turn, he moves to e. The robber
will be caught at round t+ 1 by the cop c3.

e z g

c2 c3 w f

Figure 3

Scenario 2. Suppose Wt(r) 6= Wt(c1)− 3. Assume that Wt(c2) = Wt(c3)− 1
(see Figure 3). We move the cop c2 to position w. At the robber’s turn, he
cannot move to z, otherwise he will be caught at round t + 1 by the cop c2.
Moreover, if the robber was already at z, he cannot remain there, nor can
he move to e, so he must move to g (the vertex above f). So we must have
Wt(c3) + 1 = max (Wt+1(c2),Wt+1(c3)) < Wt+1(r). Since Wt(r) < Wt(c1)− 1
and Wt(r) 6= Wt(c1) − 3, either Wt(r) = Wt(c1) − 2 or Wt(r) < Wt(c1) − 3.
If Wt(r) = Wt(c1) − 2, then r is at position a or b (see Figure 2). If r is
at a, he cannot move to x, otherwise he will be caught at round t + 1 by
the cop c1. Similarly, if r is at b, he cannot move to d. Thus, Wt+1(r) <
Wt+1(c1)− 1 = Wt(c1)− 1. If Wt(r) < Wt(c1)− 3, then Wt+1(r) < Wt(c1)− 1
forWt+1(r) ≤Wt(r)+2. Hence we must haveWt+1(r) < Wt+1(c1)−1. We have
achieved our objective for the size of the interval that Wt+1(r) can lie within is
Wt+1(c1)− 1−max (Wt+1(c2),Wt+1(c3)) = Wt(c1)− 1− (Wt(c3) + 1) = s− 1.

From Scenario 1 and 2, we see that either the robber is caught or the interval
is getting smaller and smaller. This process cannot go on indefinitely. So the
robber will be caught eventually.
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This completes the proof of the lemma. �

3. Proof of Theorem 1.1

Lemma 3.1. Let G be a connected graph on 10 vertices with ∆(G) = 3. If
G−N [v] is not a 6-cycle for all v ∈ V (G) with deg(v) = 3, then cL(G) ≤ 2.

Proof. Let c1 and c2 be the two cops at our disposal to catch the robber r in G.
Recall that for a vertex u ∈ V (G), we write degG(u) = k to mean the degree
of u in the graph G, as a whole, is k, and that ∆(G −N [u]) is the maximum
degree of the subgraph G−N [u].
Case 1. Suppose there is a vertex u0 ∈ V (G) with degG(u0) = 3 such that
∆(G−N [u0]) ≤ 2.

Since ∆(G−N [u0]) ≤ 2, every component in G−N [u0] is a path or a cycle.
Initially, we place the two cops at position u0. Then r can only be placed at
a component H in G − N [u0]. As long as there is a cop occupying u0, r will
have to remain in H.

• If H is a path, then we keep c1 at u0 and move c2 to a vertex in H.
Since cL(H) = 1, r will be caught by c2 eventually.

• Suppose H is a cycle. By the hypothesis of the lemma, H cannot be a
6-cycle. We shall assume H is a 5-cycle. The case H is a 4-cycle or a
3-cycle can be proved similarly.

– Assume there is a vertex w0 ∈ V (H) with degG(w0) = 2. Then w0

is not adjacent to any vertices in N [u0]. There are two possibilities
(see Figure 4). We keep c1 at u0 and move c2 into position as in
Figure 4.

c1

b
w0

c2

(a)

c1

a

b
w0

c2

(b)

Figure 4

Since degG(b) ≤ 3 and degH(b) = 2, b is not adjacent to any
vertices in N(u0) (Figure 4(a)) or b is adjacent to a ∈ N(u0)
(Figure 4(b)). In either case, r can only stay at positions b or w0.
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In Figure 4(a), we keep c2 at his position and move c1 to position
w0 one step at a time. In Figure 4(b), we keep c2 at his position
and move c1 to position b via a. In either case, r will be caught.

– Assume degG(w) = 3 for all w ∈ V (H).

c1

a

w1
w2 w3

c2

(a)

c1

a

w1
w2 w3

c2
w4

b

(b)

Figure 5

Since degH(w) = 2, N(w) ∩ N(u0) = 1 for all w ∈ V (H). This
means there is a vertex a ∈ N(u0) with |N(a) ∩ V (H)| = 2. We
keep c1 at u0 and move c2 into position as in Figure 5. Note that
r can only stay at positions w1 or w2. In Figure 5(a), we keep c2
at his position and move c1 to a. The robber will be caught. In
Figure 5(b), we move c2 to w3. Then r can be at positions w1 or
w4 only. Now move c1 to b. At robber’s turn, he can only remain
at w1. In the next round, we move c1 from b to w4. The robber
will be caught.

Case 2. Suppose ∆(G−N [u]) = 3 for all u ∈ V (G) with degG(u) = 3.
Pick a vertex u0 ∈ V (G) with degG(u0) = 3 and pick a v0 ∈ V (G −N [u0])

with degG−N [u0](v0) = 3. Initially we place c1 at u0 and c2 at v0. Note

that G − N [u0] − N [v0] is a disjoint union of 2 vertices or a 2-path. Let
V (G−N [u0]−N [v0]) = {w1, w2}.

Suppose G−N [u0]−N [v0] is a disjoint union of 2 vertices. We may assume r
is at position w1. Since deg(w1) ≤ 3, there is a ci such that |N(ci)∩N(w1)| ≤ 1
for some i = 1, 2. We may assume |N(c1) ∩N(w1)| ≤ 1 (see Figure 6).

In Figure 6(a), we keep c2 at his position and move c1 to w1 one step at a
time. Note that r can only remain at w1 for c2 is occupying v0. So the robber
will be caught. In Figure 6(b), we keep c2 at his position and move c1 to a.
The robber will also be caught.

Suppose G−N [u0]−N [v0] is a 2-path.

(i) |N(w2) ∩N(c1)| = 0 and |N(w1) ∩N(c1)| ≤ 1.
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c1 c2

w1 w2

(a) |N(c1) ∩N(w1)| = 0

c1 c2

a

w1 w2

(b) |N(c1) ∩N(w1)| = 1

Figure 6

This situation is quite similar like the one in Figure 6 except that
w1 and w2 are adjacent. So we use the same cop-winning strategy, that
is, keep c2 at his position and move c1 towards w1. The robber will be
caught.

(ii) |N(w2) ∩N(c1)| = 0 and |N(w1) ∩N(c1)| = 2.
Since degG(w1) = 3, w1 is not adjacent to any vertices in N(c2), i.e.,

|N(w1)∩N(c2)| = 0. If |N(w2)∩N(c2)| ≤ 1, then the cops will have a
winning strategy similar to (i). So we may assume |N(w2)∩N(c2)| = 2
(see Figure 7). If r is at w1, then we move c2 to b and in the next
round from b to w2. The robber will be caught. If r is at w2, then we
move c1 to a and in the next round from a to w1. The robber will also
be caught.

c1 c2

a b

w1 w2

Figure 7

From (i) and (ii), we may assume that |N(wi)∩N(c1)| = 1 = |N(wi)∩N(c2)|
for i = 1, 2 (see Figure 8). There are two possibilities. In Figure 8(a), we
have the case where w1 and w2 have a common neighbor in (without loss of
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u0
c1

z1 z2

v0
c2

z3 z4

w1 w2

u0
c1

z1 z2

v0
c2

z3 z4

w1 w2

(a) (b)

Figure 8

generality) N(c1). In that case, we move c1 to z1 and the robber will be caught.
In Figure 8(b), we have the case where w1 and w2 have no common neighbors
at all. Now, from the graph in Figure 8(b), we remove N [w1] from G (see
Figure 9).

u0

z1 z2 a

v0

z3 z4 b

w1 w2

u0

z2 a

v0

z4 b

G−N [w1]

Figure 9

Let J1 = G −N [w1]. From what we assume in Case 2, there is a vertex of
degree 3 in J1. Note that u0, v0, z2 and z4 are at most of degree 2 in J1. We
may assume a is of degree 3 in J1.

• Suppose a is adjacent to vertices z2 and b (see Figure 10(a)). We move
c1 to z1. Then r can only move to w2 or z2. Next, move c2 to z4. Then
r can only move to z2 or a. Next, move c1 back to u0. Then r can
only move to b. Now move c2 back to v0. Since the robber’s potential
moves are N(b) ⊆ {v0, a, z1, z3, z4}, the robber cannot move back to
w1 or w2. Hence the robber will be caught.
• Suppose a is adjacent to z4 (see Figure 10(b)). Note that a cannot be

adjacent to z1 or z3 since degJ1
(a) = 3. It may be adjacent to z2 or b.

We move c2 to z3. Then r can only move to w2 or z4. Next, move c1 to
z2. Then r can only move to z4 or a. Next, move c2 back to v0. Then
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u0
c1

z1 z2
a

v0
c2

z3 z4 b

w1 w2

u0
c1

z1 z2 a

v0
c2

z3 z4 b

w1 w2

(a) (b)

Figure 10

r can only move to a. Now move c1 back to u0. Since a is adjacent to
b or zi, the robber cannot move back to w1 or w2. Hence the robber
will be caught.

This completes the proof of the lemma. �

Now, we are ready to prove Theorem 1.1.

Theorem 1.1. If G is a connected graph with 10 vertices and ∆(G) ≤ 3, then
cL(G) ≤ 3. Furthermore, equality holds if and only if G is the Petersen graph.

Proof. By Lemma 2.1, cL(P (5, 2)) = 3. So it is sufficient to show that if G is
not the Petersen graph P (5, 2), then cL(G) ≤ 2. If ∆(G) ≤ 2, then G is a path
or a cycle, and thus, cL(G) ≤ 2. So we may assume that ∆(G) = 3 and G is
not the Petersen graph. By Lemma 3.1, we may further assume that there is a
vertex u0 ∈ V (G) with deg(u0) = 3 and J = G−N [u0] is a 6-cycle. Note that
each vertex in V (J) is adjacent to at most one vertex in N(u0). Initially we
may place two cops c1 and c2 at u0. Note that the robber r can only remain
in J as long as a cop is occupying u0.
Case 1. Suppose there are two vertices a, b ∈ V (J) such that a and b are
not adjacent to any vertices in N(u0). We consider three cases where (i) a is
adjacent to b in J , (ii) a and b are separated by a vertex in J or (iii) a and b
are separated by two vertices in J .

(i) Suppose a is adjacent to b in J . We keep c1 at u0 and move c2 into
position as in Figure 11.

Note that r can only stay at a, b or v. In Figure 11(a), v is not
adjacent to any vertices in N(u0). So we move c1 towards v, one step
at a time. We keep c2 at his position. At each robber’s turn, he can
only remain at a, b or v. Thus he will be caught by c1. In Figure 11(b),
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u0
c1

a
b v c2

(a)

u0
c1

z

a
b v c2

(b)

Figure 11

v is adjacent to the vertex z ∈ N(u0). So we move c1 to z and then
from z to v. The robber will also be caught.

(ii) The case where a and b are separated by a vertex is almost identical
to case (i). The cop’s winning strategy can be argued analogously,
starting with keeping c1 at u0 and moving c2 into position as in Figure
12.

u0
c1

a
v b c2

(a)

u0
c1

z

a
v b c2

(b)

Figure 12

(iii) Suppose a and b are separated by two vertices. Each wi ∈ V (J)\{a, b}
is adjacent to a vertex in N(u0), or else we would be in the situation
of Case (i) or (ii). Thus there is a vertex z ∈ N(u0) that is adjacent to
two vertices w1 and w2 in J . There are three possibilities (see Figure
13). We keep c1 at u0 and move c2 into position as in Figure 13.

Note that r can only stay in a, x or y. In Figure 13(a), w1 and w2

are adjacent. We move c1 to z and then from z to x. The robber will
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u0
c1

z

a
w1

x

w2

y

b c2

(a)

u0
c1

z
s

a
w1

x

y b c2

w2

(b)

u0
c1

z
s

a
x

w1 y b c2

w2

(c)

Figure 13

be caught. In Figure 13(b), w1 and w2 are separated by one vertex in
J . We move c2 to w2, and so r can only stay in {x, y, b}. Then we move
c1 to s and then from s to y. The robber will be caught. In Figure
13(c), w1 and w2 are separated by two vertices in J . We move c1 to s,
and then from s to y. Now r can only stay in a. We move c1 from y
to x and r will be caught.

Henceforth, we may assume there is at most one v ∈ J such that N(v) ∩
N(u0) = ∅. So, with 5 or 6 vertices in J , each having exactly 1 neighbor in
N(u0), there must be at least one z ∈ N(u0) which has 2 neighbors in J .
Case 2. Suppose there is a z ∈ N(u0) with N(z)∩V (J) = {a, b} such that (i)
a is adjacent to b in J or (ii) a and b are separated by a vertex in J .

(i) Suppose a is adjacent to b in J . We keep c1 at u0 and move c2 into
position as in Figure 14.

u0
c1

z

a
b v c2

(a)

u0
c1

z
w

a
b v c2 d

(b)

Figure 14

Note that r can only stay at a, b or v. In Figure 14(a), v is not
adjacent to any vertices in N(u0). So we move c1 to z and then from z
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to b. The robber will be caught. In Figure 14(b), v is adjacent to the
vertex w ∈ N(u0). So we move c1 to w. Note that r can only stay at
a, b or z. Next, move c2 to d and then from d to a. The robber will be
caught.

(ii) Suppose a and b are separated by a vertex. We keep c1 at u0 and move
c2 into position as in Figure 15.

u0
c1

z

a
v b c2 d

(a)

u0
c1

z
w x

a
v b f

e

c2 d

(b)

Figure 15

In Figure 15(a), v is not adjacent to any vertices in N(u0). So, we
move c1 to z. Note that r can only remain at v. Now move c2 to d and
then from d to a. The robber will be caught.

In Figure 15(b), v is adjacent to the vertex w ∈ N(u0).
– Suppose w is not adjacent to any vertices in V (J) except v. By

Case 1, we may assume that x is adjacent to exactly 2 vertices in
{d, e, f}. Therefore, degG(w) = 2. We move c1 to z. Note that r
can only remain at v or w. Next, move c2 to f and then from f
to b and from b to v. The robber will be caught.

– Suppose w is adjacent to a vertex y in V (J). Note that y ∈
{d, e, f}. We move c1 to z. Note that r can only remain at v or
w. Next, move c2 to y and then from y to w. The robber will be
caught.

By Case 1 and 2, we may assume that if there is a z ∈ N(u0) with N(z) ∩
V (J) = {a, b}, then a and b are separated by exactly 2 vertices in J (a and b
are of distance 3 in J). We deduce that G is isomorphic to one of the three
graphs shown in Figure 16. Note that Figure 16(c) is the Petersen graph.

In Figure 16(a), w3 is not adjacent to z3. We move c1 to z1. Then r can only
stay at w2 or w3. Next, move c2 to z2 and then from z2 to w2. The robber will
be caught. In Figure 16(b), w3 is adjacent to z3. Suppose z3 is not adjacent to
w6. We move c1 to z1. Then r can only stay at w2, w3 or z3. Next, move c2 to
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u0
c1

z1
z2 z3

w1
w2 w3 w4 w5

c2 w6

u0
c1

z1
z2 z3

w1
w2 w3 w4 w5

c2 w6

(b)(a)

u0
c1

z1
z2 z3

w1
w2 w3 w4 w5

c2 w6

(c)

Figure 16

z2. Then r can only stay at w3 or z3. Next, move c2 from z2 to w2 and then
from w2 to w3. The robber will be caught.

This completes the proof of the theorem. �

4. Proof of Theorem 1.2

Here, we provide some known results and prove the following lemmas which
will be useful in proving Theorem 1.2.

Theorem 4.1 ([7, Theorem 3.1]). If G is a connected graph on at most 8
vertices, then cL(G) ≤ 2.

Theorem 4.2 ([7, Theorem 2.4]). The graph G = K32K3 is the unique graph
on 9 vertices with cL(G) = 3. All other graphs H on 9 vertices have cL(H) ≤ 2.

Lemma 4.3. If G is a connected graph with ∆(G) ≤ 2, then cL(G) ≤ 2.

Proof. Since ∆(G) ≤ 2, G is a path or a cycle. Hence cL(G) ≤ 2. �

Lemma 4.4. If G is a connected graph on n vertices with ∆(G) ≤ 3, then
cL(G) ≤ max

(
3, bn4 c

)
.

Proof. Let
⌊
n
4

⌋
= t. We shall show that the lemma holds by using induction on

t. If t = 1, then n ≤ 7 and the lemma follows from Theorem 4.1. Assume that
the lemma holds for all 1 ≤ t < m. We shall show that the lemma also holds
for t = m; that is, we shall show it holds for n = 4m+ q, where 0 ≤ q ≤ 3.

Let u ∈ V (G) be of degree 3. If ∆(G − N [u]) ≤ 2, then by Lemma 4.3,
cL(G − N [u]) ≤ 2. Thus, cL(G) ≤ 3. So we may assume ∆(G − N [u]) = 3.
The number of vertices in G −N [u] is n′ = 4(m − 1) + q. If m − 1 ≥ 3, then
by induction, cL(G−N [u]) ≤ m− 1, and hence cL(G) ≤ m, the lemma holds.
So we may assume m ≤ 3, i.e., G is a graph with at most 15 vertices. We shall
show that 3 cops are enough to catch the robber.

Let S ⊆ V (G) be the set of all vertices of degree 3. A subset M ⊆ S is said
to be independent if N [s] ∩ N [s′] = ∅ for all s, s′ ∈ M . M ⊆ S is a maximal
independent set if |M | is of the largest size. Note that |M | ≤ 3, as |V (G)| ≤ 15.
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Case 1. Suppose |M | = 3.
Let u1, u2, u3 ∈M . Initially, we place ci at ui for i = 1, 2, 3 (see Figure 17).

u1
c1

u2
c2

u3
c3

w1 w2 w3

Figure 17

Let r be in a component J in G−N [u1, u2, u3]. Let {wj} ∈ V (J) for some
j = 1, 2, 3. Since degG(wj) ≤ 3, for any possible graph of J , |N(J)∩N(ui)| ≤ 1
for some i = 1, 2, 3. We may assume |N(J)∩N(u1)| ≤ 1. Now we move c1 to r
in J one step at a time or via the vertex of N(J)∩N(u1) if exists. In the latter
scenario, as c1 moves into V (J) via that common neighbor, the robber cannot
sneak around and then escape via that neighbor. This is because |V (J)| ≤ 3.
The robber r will have to remain in J as long as c2 and c3 are occupying u2
and u3, respectively. The robber will be caught.
Case 2. Suppose |M | = 2.

Let u1, u2 ∈ M . Initially we place c1 at u1 and c2, c3 at u2. Let r be in a
component J in G−N [u1]−N [u2].

(i) Suppose J is a path or a 3-cycle. Then we keep c1 and c2 at their
positions and use c3 to catch the robber in J . The robber will be
caught because cL(J) = 1.

(ii) Suppose J is a t-cycle, t = 4, 5, 6 with vertex set {w1, w2, . . . , wt} and
edge set {wjwj+1} where the subscripts are taken modulo t. We move
c3 to a vertex wt−1 in J as in Figure 18.

Note that |N(w1, w2, w3) ∩ N(ui)| ≤ 1 for some i = 1, 2. We may
assume |N(w1, w2, w3)∩N(u1)| ≤ 1. If |N(w1, w2, w3)∩N(u1)| = 0, we
move c1 towards w2 one step at a time. If |N(w1, w2, w3)∩N(u1)| = 1,
we move c1 towards w2 through that common vertex. We keep c2 and
c3 at their positions all the while. The robber can only remain at w1, w2

or w3. So he will be caught.
(iii) Suppose J is a 7-cycle with vertex set {w1, w2, . . . , w7} and edge set

{wjwj+1} where the subscripts are taken modulo 7.
Suppose there exists a vertex in the 7-cycle that is not adjacent to

N(u1, u2). We may assume w4 is not adjacent to N(u1, u2). Then we
move c3 to w6 in J as in Figure 19. Note that |N(w1, w2, w3)∩N(ui)| ≤
1 for some i = 1, 2. We may assume |N(w1, w2, w3)∩N(u1)| ≤ 1. Then
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u1
c1

u2
c2

w1
w2 w3 c3

wt−1

wt

Figure 18

we move c1 similarly as in Case 2(ii). Then, we move c1 to w3 if the
robber is at w4. The robber can only remain at w1, w2, w3 or w4 as c2
and c3 remain throughout the game. So he will be caught.

u1
c1

u2
c2

w1
w2 w3 w4 c3

w6

Figure 19

Now suppose each vertex in J is adjacent to N(u1, u2). By the
Pigeonhole Principle, N(u1) or N(u2) has at least 4 neighbors in J ;
suppose, without loss of generality, that N(u1) does. Since J is a 7-
cycle, then the Pigeonhole Principle further tells us that there are four
consecutive vertices on the 7-cycle such that at least three of them have
neighbors in N(u1). Let {w1, w2, w3, w4} be those four consecutive
vertices. This means |N(w1, w2, w3, w4) ∩ N(u2)| ≤ 1; let x be that
common neighbor, if it exists. We now move c3 to w6. The robber
must be in {w1, w2, w3, w4}. Then we move c2 towards r one step at a
time, via that vertex x (if it exists), while c1 and c3 remain still. The
robber must be caught.

Case 3. Suppose |M | = 1. Let u ∈ M . Then ∆(G − N [u]) ≤ 2. By Lemma
4.3, cL(G−N [u]) ≤ 2. Hence cL(G) ≤ 3.

This completes the proof. �
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The following lemma is a direct modification of Lemma 3.2 in [7], and the
proof is essentially the same.

Lemma 4.5. If G is a connected graph on n vertices with ∆(G) ≥ n− 9, then
cL(G) ≤ 3.

Proof. Place a cop at a vertex u with deg(u) = ∆(G) and keep it stationary at
all time. Then by Theorem 4.1, two cops are sufficient to catch the robber in
any component of G−N [u]. �

Lemma 4.6. Let G be a connected graph with 15 vertices and there is at least
one vertex of degree 4. If G−N [u] is the Petersen graph for all u ∈ V (G) with
degG(u) = 4, then ∆(G) ≥ 5.

Proof. It is sufficient to show that there is a vertex in V (G) with degree 5. Let
u1 ∈ V (G) with degG(u1) = 4. Since G is connected, there is a vertex u2 in
N(u1) adjacent to a vertex v1 in V (G−N [u1]). We may assume the graph is
as in Figure 20.

v1

v2 v3 v4

w1 w2 w3 w4 w5
w6

u1

u2 u3 u4 u5

Figure 20

Now consider G−N [v1] (see Figure 21). Since the resulting graph must be
the Petersen graph, we may assume u3 is adjacent to w1 and w4, u4 is adjacent
to w2 and w5, and u5 is adjacent to w3 and w6 (see Figure 22).

w1 w2 w3 w4 w5
w6

u1

u3 u4 u5

Figure 21
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v1

v2 v3 v4

w1 w2 w3 w4 w5
w6

u1

u2 u3 u4 u5

Figure 22

Now consider G − N [w1] (see Figure 23). Since the resulting graph is the
Petersen graph, w4 must be adjacent to u2. Hence, degG(w4) = 5. �

v1

v3 v4

w3 w4 w5

u1

u2 u4 u5

Figure 23

We are now ready to prove Theorem 1.2.

Theorem 1.2. If G is a connected graph with at most 15 vertices, then cL(G) ≤
3.

Proof. We first consider the case when |V (G)| ≤ 14. By Lemmas 4.3, 4.4
and 4.5, we shall only need to deal with the case when ∆(G) = 4. Let u be
a vertex in G with degree 4. Observe that G − N [u] has at most 9 vertices
and that G − N [u] is not the graph K32K3. So by Theorems 4.1 and 4.2,
cL(G−N [u]) ≤ 2, implying cL(G) ≤ 3.

We now assume that |V (G)| = 15. If ∆(G) ≤ 3, then by Lemmas 4.3 and 4.4,
cL(G) ≤ 3. If ∆(G) ≥ 6, then by Lemma 4.5, cL(G) ≤ 3. Suppose ∆(G) = 5.
Let u ∈ V (G) with degG(u) = 5. Initially, place all the three cops c1, c2 and c3
at u. Then the robber r must be at one of the components in G − N [u], say
H. Note that r has to remain in H as long as there is a cop occupying u. If H
has at most 8 vertices, then by Theorem 4.1, cL(H) ≤ 2. If H has 9 vertices
and H 6= K32K3, then by Theorem 4.2, cL(H) ≤ 2. In either case, we keep
c1 at u and use c2 and c3 to catch the robber in H. Suppose H = K32K3.
There is a vertex w ∈ V (H) with degG(w) = 5 because H is 4-regular and G is
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connected. Since K32K3 is vertex transitive, we may assume w is the vertex
at the top left of K32K3. Now keep c1 at u and move c2 to the center vertex
of K32K3. After that, move c3 to the vertex at the bottom right vertex of
K32K3. Note that r can only stay at w. Now move c1 to w through the only
vertex in N(u) ∩N(w). The robber will be caught.

So we are only left with the case when ∆(G) = 4. Let S ⊆ V (G) be the
set of all vertices of degree 4. A subset M ⊆ S is said to be independent
if N [w] ∩ N [w′] = ∅ for all w,w′ ∈ M with w 6= w′. M ⊆ S is a maximal
independent set if |M | is of the largest size. Note that |M | ≤ 3. We shall
show that three cops c1, c2, c3 are sufficient to catch the robber for each of the
possible size of M .
Case 1. Suppose |M | = 3.

Let w1, w2, w3 ∈ M . Place ci at wi for i = 1, 2, 3. Since V (G) = N [w1] ∪
N [w2] ∪N [w3], the robber will be caught.
Case 2. Suppose |M | = 2.

Let w1, w2 ∈ M . Place c1 and c3 at w1 and c2 at w2. The robber r must
be at one of the components in G − N [w1] − N [w2], say J . Since |M | = 2,
∆(J) ≤ 3. Note that r has to remain in J as long as w1 and w2 are occupied
by cops.

(i) ∆(J) = 3.
Let a ∈ V (J) with degJ(a) = 3. We keep c1 and c2 at w1 and w2,

respectively, and move c3 to a. Since |N [w1] ∪ N [w2] ∪ N [a]| = 14, r
must be at the remaining vertex, say b. Since degG(b) ≤ 4, there is a
ci (1 ≤ i ≤ 3) such that |N(b)∩N(ci)| ≤ 1. Now move ci to b one step
at a time or via the vertex in N(b) ∩N(ci) (if exists). The robber will
be caught.

(ii) ∆(J) ≤ 2. Then J is a path or a s-cycle where s ≤ 5.
– If J is a path or a 3-cycle, then we keep c1 and c2 at w1 and w2,

respectively, and use c3 to catch the robber in J .
– If J is a 4-cycle, then we keep c1 and c2 at w1 and w2, respectively,

and move c3 to a vertex in J . Note that r must be at the remaining
vertex in J , say b (see Figure 24).

b
c3

Figure 24

Since degG(b) ≤ 4, there is a ci (1 ≤ i ≤ 2) such that |N(b) ∩
N(ci)| ≤ 1. Now move ci to b one step at a time (if |N(b)∩N(ci)| =
0) or via the vertex in N(b) ∩N(ci) (if |N(b) ∩N(ci)| = 1). The
robber will be caught.

– If J is a 5-cycle, then we keep c1 and c2 at w1 and w2, respectively,
and move c3 to a vertex in J (see Figure 25).
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w1
c1

w2
c2

a
b c3

Figure 25

If there is no edge connecting a vertex in {a, b} with a vertex in
N(c1), then we move c1 to a one step at a time. Note that r can
stay at a or b only, as long as c2 and c3 are at their positions. So
the robber will be caught. Hence we may assume there is an edge
connecting a vertex in {a, b} with a vertex in N(c1). Without loss
of generality, we may assume a is adjacent to a vertex z in N(c1)
(see Figure 26).

w1
c1

w2
c2

z

a
b c3

Figure 26

Suppose N(a) ∩N(c2) = ∅.
i. If |N(b)∩N(c2)| ≤ 1, then keep c1 and c3 at their positions

and move c2 to b one step at a time (if |N(b) ∩N(c2)| = 0)
or via the vertex in N(b) ∩ N(c2) (if |N(b) ∩ N(c2)| = 1).
The robber will be caught.

ii. If |N(b) ∩ N(c2)| = 2, then N(b) ∩ N(c1) = ∅. If |N(a) ∩
N(c1)| = 1, move c1 to a via z. The robber will be caught.
For if |N(a) ∩ N(c1)| = 2 (see Figure 27), we move c2 to
b via x if the robber is at a and move c1 to a via z if the
robber is at b. In either case, the robber will be caught.

So we may assume |N(a) ∩N(c2)| = 1 (see Figure 28).
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w1
c1

w2
c2

z x

a
b c3

Figure 27

w1
c1

w2
c2

z x

a
b c3

Figure 28

If |N(b) ∩N(c2)| = 0, then keep c1 and c3 at their positions and
move c2 to a via x. If |N(b) ∩N(c1)| = 0, then keep c2 and c3 at
their positions and move c1 to a via z. In either case, the robber
will be caught. So we may assume |N(b)∩N(ci)| = 1 for i = 1, 2.
If b is adjacent to z, then keep c2 and c3 at their positions and
move c1 to z. The robber will be caught. So we may assume b is
not adjacent to z. Similarly, we may assume b is not adjacent to
x (see Figure 29).
Note that r can be at a or b. We shall assume r is at a. The
case r is at b is similar. Move c2 to x. Then r will have to move
to b. Next, move c1 to e. Then r will have to move to f . Now,
move c2 back to w2. If f is not adjacent to a vertex in N(w1)\{e},
then r will be caught in the next cop’s turn. If f is adjacent to a
vertex in N(w1)\{e}, then r will have to move from f to a vertex
in N(w1)\{e}. Now, move c1 back to w1. At robber’s turn, if r is
not at z, he will be caught in the next cop’s turn. So r must be
at z and f is adjacent to z.
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w1
c1

w2
c2

z e x f

a
b d c3

Figure 29

Now, reset the movements and assume r is at a. Move c1 to z.
Then r will have to move to b. Next, move c2 to f . Then r will
have to move to e. Now, move c1 back to w1. If e is not adjacent
to a vertex in N(w2)\{f}, then r will be caught in the next cop’s
turn. If e is adjacent to a vertex in N(w2)\{f}, then r will have
to move from e to a vertex in N(w2)\{f}. Now, move c2 back to
w2. At robber’s turn, if r is not at x, he will caught in the next
cop’s turn. So r must be at x and e is adjacent to x (see Figure
30).

w1
c1

w2
c2

z e x f

a
b d c3

Figure 30

Reset the movements and assume r is at a. Now, move c2 to x.
Then r will have to move to b. Next, move c1 to z. Then r will
have to remain at b. Move c3 to d. The robber will be caught.

Case 3. Suppose |M | = 1.
Then ∆(G−N [u]) ≤ 3 for all u ∈ V (G) with degG(u) = 4.
Suppose there is a vertex w ∈ V (G) with degG(w) = 4 such that G−N [w]

is not connected. Place all the cops at w. The robber r must be at one of the
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components in G−N [w], say J . If ∆(J) ≤ 2, then by Lemma 4.3, cL(J) ≤ 2.
So we keep one cop at w and use the other two cops to catch the robber in J .
Similarly, by Theorems 4.1 and 4.2, we may assume J = K32K3 or |V (J)| = 10.
The former cannot happen because |M | = 1. The latter also cannot happen
because G−N [w] is not connected.

So we may assume that G − N [u] is connected for all u ∈ V (G) with
degG(u) = 4. If there is a vertex v ∈ V (G) with degG(v) = 4 such that
G −N [v] is not the Petersen graph, then by Theorem 1.1, cL(G −N [v]) ≤ 2.
Hence we keep one cop at v and use the other two cops to catch the robber in
G−N [v].

Now we may assume that G −N [u] is the Petersen graph for all u ∈ V (G)
with degG(u) = 4. By Lemma 4.6, ∆(G) ≥ 5, a contradiction.

Hence cL(G) ≤ 3 and this completes the proof of the theorem. �

Corollary 4.7. If G is a connected graph with n vertices and ∆(G) ≥ n− 16,
then cL(G) ≤ 4.

Proof. Let u ∈ V (G) with deg(u) = ∆(G). Place all the four cops at u. The
robber r must be at a component in G−N [u], say H. Note that |V (H)| ≤ 15.
By Theorem 1.2, cL(H) ≤ 3. So we keep one cop at u and use the other three
cops to catch the robber in H. �

5. Remarks

In this paper, we proved in Theorem 1.2 that if a connected graph has lazy
cop number 4, then it must have at least 16 vertices. We also know from [7]
that the graph K42K4 has lazy cop number 4. However we are unable to show
that there is no other connected graph of order 16 with lazy cop number 4.

Question 5.1. Is it true that K42K4 the unique graph of order 16 with lazy
cop number 4?

In fact, the general case of the above question is conjectured in [7], and is
still an open problem.

Conjecture 5.2 ([7], Conjecture 5.1). The graph Kn2Kn is the unique small-
est graph with cL = n.
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Paris VI (1978), 131–145.

[7] B. W. Sullivan, N. Townsend, and M. Werzanski, The 3 × 3 rooks graph (K32K3) is the

unique smallest graph with lazy cop number 3, arXiv: 1606.08485(2016).
[8] , An introduction to lazy cops and robbers on graphs, College Math. J. 48 (2017),

no. 5, 322–333.

Kai An Sim

Foundation, Study and Language Institute (FSLI)
University of Reading Malaysia

Persiaran Graduan Kota Ilmu, Educity
79200 Iskandar Puteri Johor, Malaysia

Email address: simkaian@gmail.com

Ta Sheng Tan
Institute of Mathematical Sciences

University of Malaya

50603 Kuala Lumpur, Malaysia
Email address: tstan@um.edu.my

Kok Bin Wong
Institute of Mathematical Sciences

University of Malaya

50603 Kuala Lumpur, Malaysia
Email address: kbwong@um.edu.my




