
Bull. Korean Math. Soc. 55 (2018), No. 6, pp. 1659–1666

https://doi.org/10.4134/BKMS.b170937

pISSN: 1015-8634 / eISSN: 2234-3016

ON A WARING-GOLDBACH PROBLEM INVOLVING

SQUARES, CUBES AND BIQUADRATES

Yuhui Liu

Abstract. Let Pr denote an almost-prime with at most r prime factors,

counted according to multiplicity. In this paper, it is proved that for
every sufficiently large even integer N , the equation

N = x2 + p21 + p32 + p33 + p44 + p45

is solvable with x being an almost-prime P4 and the other variables
primes. This result constitutes an improvement upon that of Lü [7].

1. Introduction

Let N , k1, k2, . . . , ks be natural numbers such that 2 6 k1 6 k2 6 · · · 6
ks, N > s. Waring’s problem of mixed powers concerns the representation of N
as the form

N = xk11 + · · ·+ xkss .(1.1)

Not very much is known about results of this type. For references in this aspect,
we refer the reader to section P12 of LeVeque’s Reviews in number theory, the
bibliography in Vaughan [9] and the recent papers by J. Brüdern and by T. D.
Wooley.

In principle the Hardy-Littlewood method is applicable to problems of this
kind, but one has to overcome various difficulties not experienced in the pure
Waring’s problem (1.1) with k1 = k2 = · · · = ks. In particular, the choice of the
relevant parameters in the definitions of major and minor arcs tends to become
complicated if a deeper representation problem (1.1) is under consideration.

In 1969, Vaughan [8] investigated the equation

x21 + x22 + x33 + x34 + x45 + x46 = N.
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He proved that for any sufficiently large integer N , the following asymptotic
formula ∑
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q∑
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Sk(q, a) =

q∑
r=1

e

(
ark

q

)
, e(α) = e2πiα.

Let Pr denote an almost-prime with at most r prime factors, counted ac-
cording to multiplicity. In 2015, motivated by Brüdern [1,2], Lü [7] proved that
for every sufficiently large even integer N , the equation

N = x2 + p21 + p32 + p33 + p44 + p45(1.2)

is solvable with x being an almost-prime P6 and the pj(j = 1, 2, 3, 4, 5) primes.
In this paper, we shall obtain the following sharper result.

Theorem. For every sufficiently large even integer N , the number of solutions
of the equation

N = x2 + p21 + p32 + p33 + p44 + p45

with x being an almost-prime P4 and the other variables primes, is

� N
7
6

log6N
.

In the proof of the Theorem, we shall employ the Hardy-Littlewood method
and the linear sieve theory. The improvement of our Theorem upon that of Lü
[7] stems from the use of the linear sieve theory with the bilinear error term
instead of the linear sieve theory with the linear error term utilized by Lü [7].

2. Notation and some preliminary lemmas

Throughout this paper, ε ∈ (0, 10−10). By N we denote a sufficiently large
even integer in terms of ε. The letter p, with or without subscript, is reserved
for a prime number. The constants in O-term and �-symbol depend at most
on ε. By A ∼ B we mean that B < A 6 2B. We denote by (m,n) the greatest
common divisor of m and n. By τ(n) we denote the divisor function. As usual,
ϕ(n) stands for Euler’s function. We use e(α) to denote e2πiα and eq(α) =
e(α/q). By a(m), b(n) we denote arithmetic functions satisfying |a(m)| 6 1 and
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|b(n)| 6 1. We denote by
∑
r(q)

and
∑
r(q)∗

sums with r running over a complete

system and a reduced system of residues modulo q respectively. We set

A = 1010, Q0 = log20AN, Q1 = N
1
3+10ε, Q2 = N

1
2 ,

D = N
1
8−10ε, z = D

1
3 , Uk = 0.5N

1
k ,

Mr = {m |m ∼ U2,m = p1p2 · · · pr, z 6 p1 6 p2 6 · · · 6 pr} (5 6 r 6 12),

Nr = {n |n = p1 · · · pr−1, z 6 p1 6 p2 6 · · · 6 pr−1, p1 · · · pr−2p2r−1 6 2U2}
(5 6 r 6 12),

fk(α) =
∑
p∼Uk

(log p)e(αpk), gr(α) =
∑

n∈Nr,
np∼U2

e(α(np)2)
log p

log U2

n

,

S∗k(q, a) =
∑
r(q)∗

eq(ar
k), Sk(q, a) =

∑
r(q)

eq(ar
k),

Bd(q,N) =
∑
a(q)∗

S2(q, ad2)S∗2 (q, a)S∗3
2(q, a)S∗4

2(q, a)eq(−aN),

Ad(q,N) =
Bd(q,N)

qϕ5(q)
, Sd(N) =

∞∑
q=1

Ad(q,N), S(N) = S1(N).

For α = a
q + β, let

uk(β) =

∫ 2Uk

Uk

e(βuk) du, Uk(α) =
S∗k(q, a)

ϕ(q)
uk(β),

W (α) =
∑

m6D
2
3 ,n6D

1
3

a(m)b(n)

mnq
S2(q, am2n2)u2(β),

I(N) =

∫ ∞
−∞

u22(β)u23(β)u24(β)e(−βN) dβ.

Lemma 2.1. Let

h(α) =
∑

m6D
2
3

a(m)
∑
n6D

1
3

b(n)
∑
l∼ U2

mn

e(α(mnl)2).(2.1)

Then for α ∈ m2, we have

h(α)� N
1
3−3ε.

Proof. It follows from (4.6) in Brüdern and Kawada [3] that

h(α)� N
1
2+ε

q
1
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1
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� N
1
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For (a, q) = 1, 1 6 a 6 q, put

M0(q, a) =
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]
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(
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Then we have the Farey dissection

J0 = M0

⋃
m0

⋃
m1

⋃
m2.(2.2)

Lemma 2.2. For α = a
q + β ∈M0, we have

gr(α) =
crU2(α)

logU2
+O

(
U2 exp(− log

1
3 N)

)
, 5 6 r 6 12,(2.3)

where

cr =
(
1 +O(ε)

)(2.4)

×
∫ 11

r−1

dt1
t1

∫ t1−1

r−2

dt2
t2
· · ·
∫ tr−4−1

3

dtr−3
tr−3

∫ tr−3−1

2

log(tr−2 − 1) dtr−2
tr−2

.

Proof. It follows from the arguments used in the proof of Lemma 4 in Cai
[4]. �

3. Mean value estimations

In this section, we give two propositions for the proof of the Theorem.

Proposition 3.1. Define

Jd(N) =
∑

(dl)2+p21+p32+p33+p44+p45=N

dl∼U2, p1∼U2
p2∼U3, p3∼U3
p4∼U4, p5∼U4

5∏
j=1

log pj .

Then we have∑
m6D

2
3

a(m)
∑
n6D

1
3

b(n)

(
Jmn(N)− Smn(N)

mn
I(N)

)
� N

7
6

logAN
.
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Proof. The proof of Proposition 3.1 follows from the arguments used in the
proof of Lemma 3.1 in Lü [7] and Lemma 2.1. �

By Lemma 2.2 and arguments similar to that used in the proof of Proposition
3.1, we have:

Proposition 3.2. For 5 6 r 6 12, let

J
(r)
d (N) =

∑
(dl)2+(np)2+p31+p32+p43+p44=N

dl∼U2,np∼U2, n∈Nr
p1∼U3, p2∼U3
p3∼U4, p4∼U4

 log p

log U2

n

4∏
j=1

log pj

 .

Then we have∑
m6D

2
3

a(m)
∑
n6D

1
3

b(n)

(
J (r)
mn(N)− cr

Smn(N)

mn logU2
I(N)

)
� N

7
6

logAN
,

where cr is defined by (2.4).

4. Proof of the Theorem

In this section, f(s) and F (s) denote the classical functions in the linear
sieve theory, and γ = 0.577 · · · denotes Euler’s constant. Then by (8.2.8) and
(8.2.9) in Halberstam and Richert [5], we have

f(s) =
2eγ log(s− 1)

s
, 2 6 s 6 4,

F (s) =
2eγ

s
, 1 6 s 6 3.

In the proof of the Theorem, we adopt the following notation:

ω(d) =
Sd(N)

S(N)
, P =

∏
2<p<z

p,

N(z) =
∏

2<p<z

(
1− ω(p)

p

)
,

logU = (logU2)(logU3)
2
(logU4)

2
,

log 2U = (log 2U2)(log 2U3)
2
(log 2U4)

2
.

It follows from Lemma 4.3 in Lü [7] that the function ω(d) is multiplicative,
and

0 6 ω(p) < p, ω(p) = 1 +O(p−1)

for each prime p. Then by Mertens’s prime number theorem, it is easy to see
that

N(z) � 1

logN
.(4.1)
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Let R(N) denote the number of solutions of the equation (1.2) with x being a
P4 and the other variables primes. Upon noting the fact that the conditions
l ∼ U2, (l,P) = 1 imply that l has at most 12 prime factors, counted according
to multiplicity, we have

R(N) >
∑

l2+p21+p32+p33+p44+p45=N

l∼U2,(l,P)=1, p1∼U2
p2∼U3, p3∼U3
p4∼U4, p5∼U4

1−
12∑
r=5

∑
h2+p21+p32+p33+p44+p45=N

h∈Mr,p1∼U2
p2∼U3, p3∼U3
p4∼U4, p5∼U4

1(4.2)

>
∑

l2+p21+p32+p33+p44+p45=N

l∼U2,(l,P)=1, p1∼U2
p2∼U3, p3∼U3
p4∼U4, p5∼U4

1−
12∑
r=5

∑
(np)2+p21+p32+p33+p44+p45=N

n∈Nr,np∼U2,p1∼U2
p2∼U3,p3∼U3
p4∼U4, p5∼U4

1

= R(N)−
12∑
r=5

Rr(N), say,

where the fact Mr ⊆ {np |n ∈ Nr, np ∼ U2} is employed.
In the following subsections we shall give a non-trivial lower bound for R(N)

by the linear sieve theory with the bilinear error term.

4.1. The lower bound for R(N)

Let

N (l) =
∑

l2+p21+p32+p33+p44+p45=N

p1∼U2, p2∼U3
p3∼U3, p4∼U4

p5∼U4

5∏
j=1

log pj

and

E(d) =
∑
l∼U2

l≡0 (mod d)

N (l)− ω(d)

d
S(N)I(N).

Then by Theorem 1 in Iwaniec [6] and Proposition 3.1, we get

R(N) >
1

log 2U

∑
l∼U2

(l,P)=1

N (l)(4.3)

>

(
1 +O

(
log−

1
3 D
)) f(3)S(N)I(N)N(z)

logU
+O

(
N

7
6

logAN

)
.
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4.2. The upper bound for Rr(N) (5 6 r 6 12)

For 5 6 r 6 12, let

Nr(l) =
∑

(np)2+l2+p31+p32+p43+p44=N

n∈Nr,np∼U2,p1∼U3
p2∼U3,p3∼U4

p4∼U4

 log p

log U2

n

4∏
j=1

log pj



and

Er(d) =
∑
l∼U2

l≡0 (mod d)

Nr(l)−
crω(d)

d logU2
S(N)I(N),

where cr is defined by (2.4). Then by Theorem 1 in Iwaniec [6] and Proposition
3.2, for 5 6 r 6 12, we have

Rr(N) 6
logU2

logU

∑
l∼U2

(l,P)=1

Nr(l)(4.4)

6

(
1 +O

(
log−

1
3 D
)) F (3)crS(N)I(N)N(z)

logU
+O

(
N

7
6

logAN

)
.

4.3. Proof of the Theorem

By numerical integration, we have

c5 < 0.2215, cr < 0.0280 for 6 6 r 6 12(4.5)

and

12∑
r=5

cr < 0.4175.(4.6)

We conclude from (4.1)-(4.4) and (4.6) that

R (N) > (0.6931− 0.4175)
2eγ

3

S(N)I(N)N(z)

logU
+O

(
N

7
6

logAN

)
(4.7)

� N
7
6

log6N
,

where (3.17) and Lemma 4.2 in Lü [7] are employed. Now, by (4.7), the proof
of the Theorem is completed.
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