ON A WARING-GOLDBACH PROBLEM INVOLVING SQUARES, CUBES AND BIQUADRATES

Yuhui Liu

Abstract. Let P_{r} denote an almost-prime with at most r prime factors, counted according to multiplicity. In this paper, it is proved that for every sufficiently large even integer N, the equation

$$
N=x^{2}+p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{4}+p_{5}^{4}
$$

is solvable with x being an almost-prime P_{4} and the other variables primes. This result constitutes an improvement upon that of Lü [7].

1. Introduction

Let $N, k_{1}, k_{2}, \ldots, k_{s}$ be natural numbers such that $2 \leqslant k_{1} \leqslant k_{2} \leqslant \cdots \leqslant$ $k_{s}, N>s$. Waring's problem of mixed powers concerns the representation of N as the form

$$
\begin{equation*}
N=x_{1}^{k_{1}}+\cdots+x_{s}^{k_{s}} \tag{1.1}
\end{equation*}
$$

Not very much is known about results of this type. For references in this aspect, we refer the reader to section P12 of LeVeque's Reviews in number theory, the bibliography in Vaughan [9] and the recent papers by J. Brüdern and by T. D. Wooley.

In principle the Hardy-Littlewood method is applicable to problems of this kind, but one has to overcome various difficulties not experienced in the pure Waring's problem (1.1) with $k_{1}=k_{2}=\cdots=k_{s}$. In particular, the choice of the relevant parameters in the definitions of major and minor arcs tends to become complicated if a deeper representation problem (1.1) is under consideration.

In 1969, Vaughan [8] investigated the equation

$$
x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{4}^{3}+x_{5}^{4}+x_{6}^{4}=N .
$$

[^0]He proved that for any sufficiently large integer N, the following asymptotic formula

$$
\sum_{x_{1}^{2}+x_{2}^{2}+x_{3}^{3}+x_{4}^{3}+x_{5}^{4}+x_{6}^{4}=N} 1=\frac{\Gamma^{2}\left(\frac{3}{2}\right) \Gamma^{2}\left(\frac{4}{3}\right) \Gamma^{2}\left(\frac{5}{4}\right)}{\Gamma\left(\frac{13}{6}\right)} \widetilde{\mathfrak{S}}(N) N^{\frac{7}{6}}+O\left(N^{\frac{7}{6}-\frac{1}{96}+\varepsilon}\right)
$$

holds, where

$$
\begin{aligned}
& \widetilde{\mathfrak{S}}(N)=\sum_{q=1}^{\infty} q^{-6} \sum_{\substack{a=1 \\
(a, q)=1}}^{q} S_{2}^{2}(q, a) S_{3}^{2}(q, a) S_{4}^{2}(q, a) e\left(\frac{-a N}{q}\right), \\
& S_{k}(q, a)=\sum_{r=1}^{q} e\left(\frac{a r^{k}}{q}\right), \quad e(\alpha)=e^{2 \pi i \alpha} .
\end{aligned}
$$

Let P_{r} denote an almost-prime with at most r prime factors, counted according to multiplicity. In 2015, motivated by Brüdern [1,2], Lü [7] proved that for every sufficiently large even integer N, the equation

$$
\begin{equation*}
N=x^{2}+p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{4}+p_{5}^{4} \tag{1.2}
\end{equation*}
$$

is solvable with x being an almost-prime P_{6} and the $p_{j}(j=1,2,3,4,5)$ primes.
In this paper, we shall obtain the following sharper result.
Theorem. For every sufficiently large even integer N, the number of solutions of the equation

$$
N=x^{2}+p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{4}+p_{5}^{4}
$$

with x being an almost-prime P_{4} and the other variables primes, is

$$
\gg \frac{N^{\frac{7}{6}}}{\log ^{6} N}
$$

In the proof of the Theorem, we shall employ the Hardy-Littlewood method and the linear sieve theory. The improvement of our Theorem upon that of Lü [7] stems from the use of the linear sieve theory with the bilinear error term instead of the linear sieve theory with the linear error term utilized by Lü [7].

2. Notation and some preliminary lemmas

Throughout this paper, $\varepsilon \in\left(0,10^{-10}\right)$. By N we denote a sufficiently large even integer in terms of ε. The letter p, with or without subscript, is reserved for a prime number. The constants in O-term and \ll-symbol depend at most on ε. By $A \sim B$ we mean that $B<A \leqslant 2 B$. We denote by (m, n) the greatest common divisor of m and n. By $\tau(n)$ we denote the divisor function. As usual, $\varphi(n)$ stands for Euler's function. We use $e(\alpha)$ to denote $e^{2 \pi i \alpha}$ and $e_{q}(\alpha)=$ $e(\alpha / q)$. By $a(m), b(n)$ we denote arithmetic functions satisfying $|a(m)| \leqslant 1$ and
$|b(n)| \leqslant 1$. We denote by $\sum_{r(q)}$ and $\sum_{r(q)^{*}}$ sums with r running over a complete system and a reduced system of residues modulo q respectively. We set

$$
\begin{aligned}
& A=10^{10}, Q_{0}=\log ^{20 A} N, Q_{1}=N^{\frac{1}{3}+10 \varepsilon}, Q_{2}=N^{\frac{1}{2}}, \\
& D=N^{\frac{1}{8}-10 \varepsilon}, z=D^{\frac{1}{3}}, U_{k}=0.5 N^{\frac{1}{k}}, \\
& \mathcal{M}_{r}=\left\{m \mid m \sim U_{2}, m=p_{1} p_{2} \cdots p_{r}, z \leqslant p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{r}\right\}(5 \leqslant r \leqslant 12), \\
& \mathcal{N}_{r}=\left\{n \mid n=p_{1} \cdots p_{r-1}, z \leqslant p_{1} \leqslant p_{2} \leqslant \cdots \leqslant p_{r-1}, p_{1} \cdots p_{r-2} p_{r-1}^{2} \leqslant 2 U_{2}\right\} \\
& \quad(5 \leqslant r \leqslant 12),
\end{aligned}
$$

$f_{k}(\alpha)=\sum_{p \sim U_{k}}(\log p) e\left(\alpha p^{k}\right), g_{r}(\alpha)=\sum_{\substack{n \in \mathcal{N}_{r}, n p \sim U_{2}}} e\left(\alpha(n p)^{2}\right) \frac{\log p}{\log \frac{U_{2}}{n}}$,
$S_{k}^{*}(q, a)=\sum_{r(q)^{*}} e_{q}\left(a r^{k}\right), \quad S_{k}(q, a)=\sum_{r(q)} e_{q}\left(a r^{k}\right)$,
$B_{d}(q, N)=\sum_{a(q)^{*}} S_{2}\left(q, a d^{2}\right) S_{2}^{*}(q, a) S_{3}^{* 2}(q, a) S_{4}^{* 2}(q, a) e_{q}(-a N)$,
$A_{d}(q, N)=\frac{B_{d}(q, N)}{q \varphi^{5}(q)}, \quad \mathfrak{S}_{d}(N)=\sum_{q=1}^{\infty} A_{d}(q, N), \quad \mathfrak{S}(N)=\mathfrak{S}_{1}(N)$.
For $\alpha=\frac{a}{q}+\beta$, let
$u_{k}(\beta)=\int_{U_{k}}^{2 U_{k}} e\left(\beta u^{k}\right) \mathrm{d} u, \quad U_{k}(\alpha)=\frac{S_{k}^{*}(q, a)}{\varphi(q)} u_{k}(\beta)$,
$W(\alpha)=\sum_{m \leqslant D^{\frac{2}{3}}, n \leqslant D^{\frac{1}{3}}} \frac{a(m) b(n)}{m n q} S_{2}\left(q, a m^{2} n^{2}\right) u_{2}(\beta)$,
$\mathfrak{I}(N)=\int_{-\infty}^{\infty} u_{2}^{2}(\beta) u_{3}^{2}(\beta) u_{4}^{2}(\beta) e(-\beta N) \mathrm{d} \beta$.
Lemma 2.1. Let

$$
\begin{equation*}
h(\alpha)=\sum_{m \leqslant D^{\frac{2}{3}}} a(m) \sum_{n \leqslant D^{\frac{1}{3}}} b(n) \sum_{l \sim \frac{U_{2}}{m n}} e\left(\alpha(m n l)^{2}\right) . \tag{2.1}
\end{equation*}
$$

Then for $\alpha \in \mathfrak{m}_{2}$, we have

$$
h(\alpha) \ll N^{\frac{1}{3}-3 \varepsilon} .
$$

Proof. It follows from (4.6) in Brüdern and Kawada [3] that

$$
\begin{aligned}
h(\alpha) & \ll \frac{N^{\frac{1}{2}+\varepsilon}}{q^{\frac{1}{2}}(1+N|\beta|)^{\frac{1}{2}}}+N^{\frac{1}{3}-3 \varepsilon} \\
& \ll N^{\frac{1}{3}-3 \varepsilon} .
\end{aligned}
$$

For $(a, q)=1,1 \leqslant a \leqslant q$, put

$$
\begin{aligned}
& \mathfrak{M}_{0}(q, a)=\left(\frac{a}{q}-\frac{Q_{0}^{5}}{N}, \frac{a}{q}+\frac{Q_{0}^{5}}{N}\right], \mathfrak{M}_{0}=\bigcup_{1 \leqslant q \leqslant Q_{0}^{5}} \bigcup_{\substack{a=1 \\
(a, q)=1}}^{q} \mathfrak{M}_{0}(q, a), \\
& \mathfrak{M}(q, a)=\left(\frac{a}{q}-\frac{1}{q Q_{2}}, \frac{a}{q}+\frac{1}{q Q_{2}}\right], \mathfrak{M}=\bigcup_{1 \leqslant q \leqslant Q_{0}^{5}} \bigcup_{\substack{a=1 \\
(a, q)=1}}^{q} \mathfrak{M}(q, a), \\
& \mathfrak{J}_{0}=\left(-\frac{1}{Q_{2}}, 1-\frac{1}{Q_{2}}\right], \mathfrak{m}_{0}=\mathfrak{M} \backslash \mathfrak{M}_{0}, \\
& \mathfrak{m}_{1}=\bigcup_{Q_{0}^{5}<q \leqslant Q_{1}} \bigcup_{\substack{a=1 \\
(a, q)=1}}^{q} \mathfrak{M}(q, a), \mathfrak{m}_{2}=\mathfrak{J}_{0} \backslash\left(\mathfrak{M} \bigcup \mathfrak{m}_{1}\right) .
\end{aligned}
$$

Then we have the Farey dissection

$$
\begin{equation*}
\mathfrak{J}_{0}=\mathfrak{M}_{0} \bigcup \mathfrak{m}_{0} \bigcup \mathfrak{m}_{1} \bigcup \mathfrak{m}_{2} \tag{2.2}
\end{equation*}
$$

Lemma 2.2. For $\alpha=\frac{a}{q}+\beta \in \mathfrak{M}_{0}$, we have

$$
\begin{equation*}
g_{r}(\alpha)=\frac{c_{r} U_{2}(\alpha)}{\log U_{2}}+O\left(U_{2} \exp \left(-\log ^{\frac{1}{3}} N\right)\right), 5 \leqslant r \leqslant 12 \tag{2.3}
\end{equation*}
$$

where

$$
\begin{align*}
c_{r}= & (1+O(\varepsilon)) \tag{2.4}\\
& \times \int_{r-1}^{11} \frac{\mathrm{~d} t_{1}}{t_{1}} \int_{r-2}^{t_{1}-1} \frac{\mathrm{~d} t_{2}}{t_{2}} \cdots \int_{3}^{t_{r-4}-1} \frac{\mathrm{~d} t_{r-3}}{t_{r-3}} \int_{2}^{t_{r-3}-1} \frac{\log \left(t_{r-2}-1\right) \mathrm{d} t_{r-2}}{t_{r-2}}
\end{align*}
$$

Proof. It follows from the arguments used in the proof of Lemma 4 in Cai [4].

3. Mean value estimations

In this section, we give two propositions for the proof of the Theorem.

Proposition 3.1. Define

$$
J_{d}(N)=\sum_{\substack{(d l)^{2}+p_{1}^{2}+p_{2}^{3}+p_{3}^{3}+p_{4}^{4}+p_{5}^{4}=N \\ d_{1} \sim U_{2}, p_{1} \sim U_{2} \\ p_{2} \sim U_{3}, p_{3} \sim U_{3} \\ p_{4} \sim U_{4}, p_{5} \sim U_{4}}} \prod_{j=1}^{5} \log p_{j}
$$

Then we have

$$
\sum_{m \leqslant D^{\frac{2}{3}}} a(m) \sum_{n \leqslant D^{\frac{1}{3}}} b(n)\left(J_{m n}(N)-\frac{\mathfrak{S}_{m n}(N)}{m n} \Im(N)\right) \ll \frac{N^{\frac{7}{6}}}{\log ^{A} N}
$$

Proof. The proof of Proposition 3.1 follows from the arguments used in the proof of Lemma 3.1 in Lü [7] and Lemma 2.1.

By Lemma 2.2 and arguments similar to that used in the proof of Proposition 3.1, we have:

Proposition 3.2. For $5 \leqslant r \leqslant 12$, let

$$
J_{d}^{(r)}(N)=\sum_{\substack{(d l)^{2}+(n p)^{2}+p_{1}^{3}+p_{2}^{3}+p_{3}^{4}+p_{4}^{4}=N \\ d l \sim U_{2}, n p \sim U_{2}, n \in \mathcal{N}_{r} \\ p_{1} \sim U_{3}, p_{2} \sim U_{3} \\ p_{3} \sim U_{4}, p_{4} \sim U_{4}}}\left(\frac{\log p}{\log \frac{U_{2}}{n}} \prod_{j=1}^{4} \log p_{j}\right)
$$

Then we have

$$
\sum_{m \leqslant D^{\frac{2}{3}}} a(m) \sum_{n \leqslant D^{\frac{1}{3}}} b(n)\left(J_{m n}^{(r)}(N)-c_{r} \frac{\mathfrak{S}_{m n}(N)}{m n \log U_{2}} \Im(N)\right) \ll \frac{N^{\frac{7}{6}}}{\log ^{A} N}
$$

where c_{r} is defined by (2.4).

4. Proof of the Theorem

In this section, $f(s)$ and $F(s)$ denote the classical functions in the linear sieve theory, and $\gamma=0.577 \cdots$ denotes Euler's constant. Then by (8.2.8) and (8.2.9) in Halberstam and Richert [5], we have

$$
\begin{array}{ll}
f(s)=\frac{2 e^{\gamma} \log (s-1)}{s}, & 2 \leqslant s \leqslant 4, \\
F(s)=\frac{2 e^{\gamma}}{s}, & 1 \leqslant s \leqslant 3 .
\end{array}
$$

In the proof of the Theorem, we adopt the following notation:

$$
\begin{aligned}
& \omega(d)=\frac{\mathfrak{S}_{d}(N)}{\mathfrak{S}(N)}, \mathfrak{P}=\prod_{2<p<z} p, \\
& \mathfrak{N}(z)=\prod_{2<p<z}\left(1-\frac{\omega(p)}{p}\right), \\
& \log \mathbf{U}=\left(\log U_{2}\right)\left(\log U_{3}\right)^{2}\left(\log U_{4}\right)^{2}, \\
& \log 2 \mathbf{U}=\left(\log 2 U_{2}\right)\left(\log 2 U_{3}\right)^{2}\left(\log 2 U_{4}\right)^{2} .
\end{aligned}
$$

It follows from Lemma 4.3 in $\mathrm{Lü}[7]$ that the function $\omega(d)$ is multiplicative, and

$$
0 \leqslant \omega(p)<p, \quad \omega(p)=1+O\left(p^{-1}\right)
$$

for each prime p. Then by Mertens's prime number theorem, it is easy to see that

$$
\begin{equation*}
\mathfrak{N}(z) \asymp \frac{1}{\log N} . \tag{4.1}
\end{equation*}
$$

Let $R(N)$ denote the number of solutions of the equation (1.2) with x being a P_{4} and the other variables primes. Upon noting the fact that the conditions $l \sim U_{2},(l, \mathfrak{P})=1$ imply that l has at most 12 prime factors, counted according to multiplicity, we have

$$
\begin{aligned}
& =\mathcal{R}(N)-\sum_{r=5}^{12} \mathcal{R}_{r}(N), \text { say, }
\end{aligned}
$$

where the fact $\mathcal{M}_{r} \subseteq\left\{n p \mid n \in \mathcal{N}_{r}, n p \sim U_{2}\right\}$ is employed.
In the following subsections we shall give a non-trivial lower bound for $R(N)$ by the linear sieve theory with the bilinear error term.

4.1. The lower bound for $\mathcal{R}(N)$

Let

$$
\mathcal{N}(l)=\sum_{\substack{l^{2}+p_{1}^{2}+p_{3}^{3}+p_{3}^{3}+p_{4}^{4}+p_{5}^{4}=N \\ p_{1} \sim U_{3}, p_{2} \sim U_{3} \\ p_{3} \sim p_{3}, p_{4} \sim U_{3} \\ p_{5} \sim U_{4}}} \prod_{j=1}^{5} \log p_{j}
$$

and

$$
\mathcal{E}(d)=\sum_{\substack{l \sim U_{2} \\ l \equiv 0(\bmod d)}} \mathcal{N}(l)-\frac{\omega(d)}{d} \mathfrak{S}(N) \mathfrak{I}(N)
$$

Then by Theorem 1 in Iwaniec [6] and Proposition 3.1, we get

$$
\begin{align*}
\mathcal{R}(N) & \geqslant \frac{1}{\log 2 \mathbf{U}} \sum_{\substack{l \sim U_{2} \\
(l, \mathcal{P})=1}} \mathcal{N}(l) \tag{4.3}\\
& \geqslant\left(1+O\left(\log ^{-\frac{1}{3}} D\right)\right) \frac{f(3) \mathfrak{S}(N) \mathfrak{I}(N) \mathfrak{N}(z)}{\log \mathbf{U}}+O\left(\frac{N^{\frac{7}{6}}}{\log ^{A} N}\right)
\end{align*}
$$

4.2. The upper bound for $\mathcal{R}_{r}(N)(5 \leqslant r \leqslant 12)$

For $5 \leqslant r \leqslant 12$, let

$$
\mathcal{N}_{r}(l)=\sum_{\substack{(n)^{2}+l^{2}+p_{1}^{3}+p_{2}^{3}+p_{3}^{4}+p_{4}^{4}=N \\ n \in \mathcal{N}_{r}, p_{p} \sim p_{2}, p_{1} \sim U_{3} \\ p_{2} \sim U_{3}, p_{3} \sim U_{4} \\ p_{4} \sim U_{4}}}\left(\frac{\log p}{\left.\left.\log \frac{U_{2}}{n} \prod_{j=1}^{4} \log p_{j}\right)\right)}\right.
$$

and

$$
\mathcal{E}_{r}(d)=\sum_{\substack{l \sim U_{2} \\ l \equiv 0(\bmod d)}} \mathcal{N}_{r}(l)-\frac{c_{r} \omega(d)}{d \log U_{2}} \mathfrak{S}(N) \mathfrak{I}(N),
$$

where c_{r} is defined by (2.4). Then by Theorem 1 in Iwaniec [6] and Proposition 3.2 , for $5 \leqslant r \leqslant 12$, we have
(4.4) $\mathcal{R}_{r}(N) \leqslant \frac{\log U_{2}}{\log \mathbf{U}} \sum_{\substack{l \sim U_{2} \\\left(l, \mathfrak{F}^{\prime}\right)=1}} \mathcal{N}_{r}(l)$

$$
\leqslant\left(1+O\left(\log ^{-\frac{1}{3}} D\right)\right) \frac{F(3) c_{r} \mathfrak{S}(N) \mathfrak{I}(N) \mathfrak{N}(z)}{\log \mathbf{U}}+O\left(\frac{N^{\frac{7}{6}}}{\log ^{A} N}\right)
$$

4.3. Proof of the Theorem

By numerical integration, we have

$$
\begin{equation*}
c_{5}<0.2215, \quad c_{r}<0.0280 \text { for } 6 \leqslant r \leqslant 12 \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{r=5}^{12} c_{r}<0.4175 \tag{4.6}
\end{equation*}
$$

We conclude from (4.1)-(4.4) and (4.6) that

$$
\begin{align*}
R(N) & \geqslant(0.6931-0.4175) \frac{2 e^{\gamma}}{3} \frac{\mathfrak{S}(N) \mathfrak{I}(N) \mathfrak{N}(z)}{\log \mathbf{U}}+O\left(\frac{N^{\frac{7}{6}}}{\log ^{A} N}\right) \tag{4.7}\\
& \gg \frac{N^{\frac{7}{6}}}{\log ^{6} N},
\end{align*}
$$

where (3.17) and Lemma 4.2 in Lü [7] are employed. Now, by (4.7), the proof of the Theorem is completed.
Acknowledgement. The author would like to thank the anonymous referee for his/her patience and time in refereeing this paper.

References

[1] J. Brüdern, Sieves, the circle method and Waring's problem for cubes, Mathematica Gottingenis 51 (1991).
[2] _ A sieve approach to the Waring-Goldbach problem I. Sums of four cubes, Ann. Sci. Ec. Norm. Sup. 28 (1995), no. 4, 461-476.
[3] J. Brüdern and K. Kawada, Ternary problems in additive prime number theory, in Analytic number theory (Beijing/Kyoto, 1999), 39-91, Dev. Math., 6, Kluwer Acad. Publ., Dordrecht, 2002.
[4] Y. Cai, On Waring-Goldbach problem involving fourth powers, J. Number Theory 131 (2011), no. 8, 1347-1362.
[5] H. Halberstam and H.-E. Richert, Sieve Methods, Academic Press, London, 1974.
[6] H. Iwaniec, A new form of the error term in the linear sieve, Acta Arith. 37 (1980), 307-320.
[7] X. D. Lü, The Waring-Goldbach problem: two squares, two cubes and two biquadrates, Chinese J. Contemp. Math. 36 (2015), no. 2, 145-156; translated from Chinese Ann. Math. Ser. A 36 (2015), no. 2, 161-174.
[8] R. C. Vaughan, On the representation of numbers as sums of squares, cubes and fourth powers and on the representation of numbers as sums of powers of primes, University of London, 1969.
[9] , The Hardy-Littlewood Method, second edition, Cambridge Tracts in Mathematics, 125, Cambridge University Press, Cambridge, 1997.

Yuhui Liu
School of Mathematical Sciences
Tongui University
Shanghai, 200092, P. R. China
Email address: tjliuyuhui@outlook.com

[^0]: Received October 26, 2017; Revised September 20, 2018; Accepted October 11, 2018.
 2010 Mathematics Subject Classification. 11P32, 11N36.
 Key words and phrases. Waring-Goldbach problem, Hardy-Littlewood method, almostprime, sieve theory.

 This work was supported by the National Natural Science Foundation of China (grant no.11771333).

