DOI QR코드

DOI QR Code

인조잔디 바닥종류에 따른 양면수광형 실리콘 태양광 모듈의 발전성능 평가

Evaluation of Power Generation Performance for Bifacial Si Photovoltaic Modules installed on Different Artificial Grass Floors

  • 투고 : 2018.08.02
  • 심사 : 2018.09.07
  • 발행 : 2018.09.30

초록

본 연구에서는 양면수광형 태양광 발전시스템의 바닥면 적용을 목적으로 개발된 고반사율 인조잔디를 적용하여 태양광 모듈의 발전성능 옥외실증평가를 실시하였다. 사용된 모듈은 60셀 규격의 단면수광형 모듈과 2종의 양면수광형 모듈이며, 양면수광형 모듈들은 각각 split-type과 일반 box-type의 정션박스가 부착된 모델이다. 평가결과 양면모듈의 split-type 정션박스가 일반 box-type 정션박스 대비 후면출력개선에 크게 도움이 되었고, 이는 energy yield 향상으로 이어졌다. 양면수광형 모듈은 단면모듈 대비 일반 시멘트 바닥면에서는 평균적으로 28-29%, 인조잔디 바닥면에서는 29-33% 정도의 발전량 향상 (bifacial gain)을 보였다. 인조잔디의 경우 반사율을 높힌 시편의 경우 반사율(Albedo)이 0.18로 기존의 단모 및 장모의 반사율 0.14-0.15 보다 우수한 것으로 평가되었고, 이는 bifacial gain의 기존 29-30% 수준에서 33%로의 개선을 달성하였다.

In this study, the outdoor evaluation test was performed to characterize the highly-reflective artificial grass to be used for bifacial photovoltaic (PV) power generation system. The 60-cell n-type Si monofacial and bifacial PV modules were employed, where two types of bifacial modules were equipped with split-type and box-type junction boxes, respectively. The results showed that the split-type junction box improved the rear-side power production and thus energy yield of bifacial module compared to the box-type junction box causing the shadow effect. Highly-reflective artificial grass achieved relatively high albedo of 0.18, and excellent bifacial gain of 33%, compared to conventional artificial grass with an albedo of 0.14-0.15, and bifacial gain of 29-30%.

키워드

참고문헌

  1. 2018, Snapshot of Global Photovoltaic Markets, International Energy Agency (IEA) PhotoVoltaic Power Systems (PVPS) Programme.
  2. 2018, Best Research-Cell Efficiencies, https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf
  3. S. Dittmann et al., 2017, Characterization of bifacial PV mini-modules using front- and doubleside illumination, 33rd European PV Solar Energy Conference.
  4. R. Guerrero-Lemus, R. Vega, T. Kim, A. Kimm, L. E. Shephard, 2016, Bifacial solar photovoltaics-A technology review, Renewable and Sustainable Energy Reviews, Vol. 60, pp. 1533-1549. https://doi.org/10.1016/j.rser.2016.03.041
  5. 2018, International Techology Roadmap for Photovoltaic (ITRPV), 9th Edition.
  6. A. Cuevas et al., 1982, 50 Per cent more output power from an albedo-collecting flat panel using bifacial solar cells, Solar Energy, Vol. 29, No. 5, pp. 419-420 https://doi.org/10.1016/0038-092X(82)90078-0
  7. D. Park, M. Kim, W. So, S.-Y. Oh, H. Park, S. Jang, S.-H. Park, W.K. Kim, 2018, Evaluation of bifacial Si solar module with different albedo conditions, Current Photovoltaic Research, Vol. 6, No. 2, pp. 62-67. https://doi.org/10.21218/CPR.2018.6.2.062
  8. J. E. Castillo-Aguilella, P. S. Hauser, 2016, Multi-variable bifacial photovoltaic module test results and best-fit annual bifacial energy yield model, IEEE Access, Vol. 4, pp. 498-506. https://doi.org/10.1109/ACCESS.2016.2518399
  9. E.E. van Dyk, E.L. Meyer, 2004, Analysis of the effect of parasitic resistances on the performance of photovoltaic modules, Renewable Energy, Vol. 29, pp. 333-344. https://doi.org/10.1016/S0960-1481(03)00250-7
  10. R. Ramaprabha, B. L. Mathur, 2009, Impact of partial shading onsolar PV module containing series connected cells, International Journal of Recent Trends in Engineering, Vol. 2, No. 7, pp. 56-60.
  11. M. Kim, S. Ji, S. Y. Oh, J. H. Jung, 2016, Prediction study of solar modules considering the shadow effect, Current Photovoltaic Research, Vol. 4, No. 2, pp. 80-86. https://doi.org/10.21218/CPR.2016.4.2.080