DOI QR코드

DOI QR Code

7xxx계급 알루미늄 열간 압출재의 평가를 위한 미세조직과 응력-변형률 곡선의 분석

Charactetristical Analysis of the Microstructure and the Stress-Strain Curves for the Evaluation of 7xxx Series Aluminum Extrudates

  • 이상용 (안동대학교 신소재공학부) ;
  • 우영호 (안동대학교 신소재공학부)
  • Lee, S.Y. (Dept. of Advanced Materials Engineering, Andong National University) ;
  • Woo, Y.H. (Dept. of Advanced Materials Engineering, Andong National University)
  • 투고 : 2018.10.17
  • 심사 : 2018.11.20
  • 발행 : 2018.11.30

초록

Simple tensile tests and microstructural investigations have been performed on extrudates of high strength aluminum alloys such as 7075, 7021 and 7xxx(Sc) to understand correlation between extruding conditions and extruded properties. Tensile specimens which were taken from different locations at the same cross section of an extrudate were tested at room temperature and with a strain rate of $8.9{\times}10^{-5}/s$. The microstructures according to the locations at the cross section have been observed using optical microscopy and electron back-scattered diffraction (EBSD) mapping to characterize the effect on stress-strain curve. The results could be classified in three types independent of alloying contents and extusion methods. The fine differences in the stress-strain curves were resulted from inhomogenity in the microstructures according to locations of an extrudate which were performed through instantaneous extruding conditions such as temperature, strain rate and strain.

키워드

참고문헌

  1. T. Sheppard : Extrusion of Aluminum Alloys, Kluwer Academic Publishers, Dordrecht (1999).
  2. J. Hirsch : Trans. Nonferrous Met. Soc. China, 24 (2014) 1995. https://doi.org/10.1016/S1003-6326(14)63305-7
  3. N. Hashimoto : Kobelco Tecnology Review, 35 (2017) 69.
  4. L. Li, J. Zhou and J. Duszczyk : J. of Mat. Process. Tech. 146 (2004) 203. https://doi.org/10.1016/j.jmatprotec.2003.10.018
  5. C. Lin and R. S. Ransing : J. of Mat. Process. Tech. 209 (2009) 3416. https://doi.org/10.1016/j.jmatprotec.2008.07.042
  6. F. Parvizian, T Kayser, C. Hortig and B. Svendsen : J. of Mat. Process. Tech. 209 (2009) 876. https://doi.org/10.1016/j.jmatprotec.2008.02.076
  7. A. F. Bastani, T. Aukrust and S. Brandal : J. of Mat. Process. Tech. 211 (2011) 650. https://doi.org/10.1016/j.jmatprotec.2010.11.021
  8. X. Duan and T. Sheppard : Materials Science & Engineering A, 351 (2003) 282. https://doi.org/10.1016/S0921-5093(02)00840-7
  9. Y. Deng, Z. M. Yin and J. W. Huang : Materials Science & Engineering A, 528 (2011) 1780. https://doi.org/10.1016/j.msea.2010.11.016
  10. Q. Yang, Z. Deng, Z. Zhang, Q. Liu, Z. Jia and G. Huang : Materials Science & Engineering A, 662 (2016) 204. https://doi.org/10.1016/j.msea.2016.03.027
  11. V. V. Zakharov : Advanced Performance Materials, 2 (1995) 51. https://doi.org/10.1007/BF00711651
  12. B. Lenczowski, R. Rauh, D. Wieser, G. Tempus, G. Fisher, G. Becker, K. Folkers, R. Braun and G. Luetjering : Aluminum 76 (2000) 200.
  13. D. W. Suh, S. Y. Lee, K. H. Lee, S. K. Lim and K. H. Oh : J. of Mat. Process. Tech. 155-156 (2004) 1330. https://doi.org/10.1016/j.jmatprotec.2004.04.195