참고문헌
- Arbelo, M.A., Herrmann, A., Castro, S.G., Khakimova, R., Zimmermann, R. and Degenhardt, R. (2015), "Investigation of buckling behavior of composite shell structures with cutouts", Appl. Compos. Mater., 22(6), 623-636. https://doi.org/10.1007/s10443-014-9428-x
- Card, M.F. (1969), "The sensitivity of buckling of axially compressed fiber-reinforced cylindrical shells to small geometric imperfections", NASA TMX-61914.
- Castro, S.G., Zimmermann, R., Arbelo, M.A., Khakimova, R., Hilburger, M.W. and Degenhardt, R. (2014), "Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells", Thin-Wall. Struct., 74, 118-132. https://doi.org/10.1016/j.tws.2013.08.011
- Composite Materials Handbook, MIL-HDBK-17-2F (2002), Polymer Matrix Composites Materials Properties, Volume 2.
- Degenhardt, R., Kling, A., Bethge, A., Orf, J., Karger, L., Zimmermann, R. and Calvi, A. (2010), "Investigations on imperfection sensitivity and deduction of improved knock-down factors for unstiffened CFRP cylindrical shells", Compos. Struct., 92(8), 1939-1946. https://doi.org/10.1016/j.compstruct.2009.12.014
- Donnell, L.H. (1934), "A new theory for the buckling of thin cylinders under axial compression and bending", Trans. Asme, 56(11), 795-806.
- Flugge, W. (1932), "Die stabilitat der Kreiszylinderschale", Ingenieur-Archiv, 3(5), 463-506. https://doi.org/10.1007/BF02079822
-
Franke, W.D. (1987), "FMEA Fehlermglichkeits- und -einflu
$\ss$ analyse in der industriellen Praxis", Moderne Industrie, Landsberg, Germany. - Godoy, L.A. and Flores, F.G. (2002), "Imperfection sensitivity to elastic buckling of wind loaded open cylindrical tanks", Struct. Eng. Mech., Int. J., 13(5), 533-542. https://doi.org/10.12989/sem.2002.13.5.533
- Guo, Z., Han, X., Guo, M. and Han, Z. (2015), "Buckling analysis of filament wound composite cylindrical shell for considering the filament undulation and crossover", Struct. Eng. Mech., Int. J., 55(2), 399-411. https://doi.org/10.12989/sem.2015.55.2.399
- Hilburger, M.W., Waas, A.M. and Starnes, Jr., J.H. (1998), "A numerical and experimental study of the response of selected compression-loaded composite shells with cutouts", Proceedings of the 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Long Beach, CA, USA, AIAA 98-1768.
- Hilburger, M.W., Waas, A.M. and Starnes, J.H. (1999), "Response of composite shells with cutouts to internal pressure and compression loads", AIAA Journal, 37(2), 232-237. https://doi.org/10.2514/2.695
- Hilburger, M.W., Nemeth, M.P. and Starnes, J.H. (2006), "Shell buckling design criteria based on manufacturing imperfection signatures", AIAA Journal, 44(3), 654-663. https://doi.org/10.2514/1.5429
- Huhne, C., Rolfes, R., Breitbach, E. and Tessmer, J. (2008), "Robust design of composite cylindrical shells under axial compression-simulation and validation", Thin-Wall. Struct., 46(7), 947-962. https://doi.org/10.1016/j.tws.2008.01.043
- Hutchinson, J.W. and Koiter, W.T. (1970), "Postbuckling theory", Appl. Mech. Rev., 23(12), 1353-1366.
- Khayat, M., Poorveis, D. and Moradi, S. (2016), "Buckling analysis of laminated composite cylindrical shell subjected to lateral displacement-dependent pressure using semi-analytical finite strip method", Steel Compos. Struct., Int. J., 22(2), 301-321.
- Khot, N.S. (1968), "On the influence of initial geometric imperfections on the buckling and postbuckling behavior of fiber-reinforced cylindrical shells under uniform axial compression (No. AFFDL-TR-68-136)", Air force flight dynamics lab wright-oatterson AFB OH.
- Khot, N.S. and Venkayya, V.B. (1970), "Effect of fiber orientation on initial postbuckling behavior and imperfection sensitivity of composite cylindrical shells (No. AFFDL-TR-70-125)", Air force flight dynamics lab wright-oatterson AFB OH.
- Koiter, W.T. (1945), A Translation of the Stability of Elastic Equilibrium, Tech. Hooge School.
- Orifici, A. and Bisagni, C. (2013), "Perturbation-based imperfection analysis for composite cylindrical shells buckling in compression", Compos. Struct., 106, 520-528.
- Ravenhall, R. (1964), "Stiffness and buckling in filament-wound motors", J. Spacecr. Rockets, 1(3), 260-263. https://doi.org/10.2514/3.27648
- Seide, P., Weingarten, V.I. and Morgan, E.J. (1960), "The development of design criteria for elastic stability of thin shell structures (No. EM-10-26)", TRW Space Technology Labs Los Angeles, CA, USA.
- Shakouri, M., Spagnoli, A. and Kouchakzadeh, M.A. (2016), "Effects of imperfection shapes on buckling of conical shells under compression", Struct. Eng. Mech., Int. J., 60(3), 365-386. https://doi.org/10.12989/sem.2016.60.3.365
- Simulia, D.S. (2012), Abaqus 6.12 Analysis User's Manual, Providence, RI, USA.
- Tafreshi, A. (2002), "Buckling and post-buckling analysis of composite cylindrical shells with cutouts subjected to internal pressure and axial compression loads", Int. J. Press. Vessels Pip., 79(5), 351-359. https://doi.org/10.1016/S0308-0161(02)00026-1
- Taheri-Behrooz, F., Esmaeel, R.A. and Taheri, F. (2012), "Response of perforated glass/epoxy composite tubes subjected to axial compressive loading", Thin-Wall. Struct., 50, 174-181. https://doi.org/10.1016/j.tws.2011.10.004
- Tennyson, R.C. (1975), "Buckling of laminated composite cylinders: a review", Composites, 6(1), 17-24. https://doi.org/10.1016/0010-4361(75)90374-2
- Wagner, H.N.R., Huhne, C., Niemann, S. and Khakimova, R. (2017), "Robust design criterion for axially loaded cylindrical shells-Simulation and Validation", Thin-Wall. Struct., 115, 154-162. https://doi.org/10.1016/j.tws.2016.12.017
- Weingarten, V.I. and Seide, P. (1965), "Elastic stability of thinwalled cylindrical and conical shells under combined external pressure and axial compression", AIAA J., 3(5), 913-920. https://doi.org/10.2514/3.3015
- Winterstetter, T.A. and Schmidt, H. (2002), "Stability of circular cylindrical steel shells under combined loading", Thin-Wall. Struct., 40(10), 893-910. https://doi.org/10.1016/S0263-8231(02)00006-X
피인용 문헌
- PSO-Based Approach for Buckling Analysis of Shell Structures with Geometric Imperfections vol.2019, pp.None, 2019, https://doi.org/10.1155/2019/4073919
- ANALYSIS OF THE GLOBAL AND LOCAL IMPERFECTION OF STRUCTURAL MEMBERS AND FRAMES vol.25, pp.8, 2018, https://doi.org/10.3846/jcem.2019.10434
- Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique vol.34, pp.2, 2020, https://doi.org/10.12989/scs.2020.34.2.227
- A semi-analytical study on effects of geometric imperfection and curved fiber paths on nonlinear response of compression-loaded laminates vol.40, pp.4, 2018, https://doi.org/10.12989/scs.2021.40.4.621