DOI QR코드

DOI QR Code

Direct strength method for high strength steel welded section columns

  • Received : 2018.04.09
  • Accepted : 2018.10.29
  • Published : 2018.11.25

Abstract

The direct strength method adopted by the AISI Standard and AS/NZS 4600 is an advanced design method meant to substitute the effective width method for the design of cold-formed steel structural members accounting for local instability of thin plate elements. It was proven that the design strength formula for the direct strength method could predict the ultimate strength of medium strength steel welded section compressive and flexural members with local buckling reasonably. This paper focuses on the modification of the direct strength formula for the application to high strength and high performance steel welded section columns which have the nominal yield stress higher than 460 MPa and undergo local buckling, overall buckling or their interaction. The resistance of high strength steel welded H and Box section columns calculated by the proposed direct strength formulae were validated by comparison with various compression test results, FE results, and predictions by existing specifications.

Keywords

Acknowledgement

Supported by : Yeungnam University

References

  1. Akrami, V. and Erfani, S. (2015), "Effect of local web buckling on the behavior of reduced web beam section", Steel Compos. Struct., Int. J., 18(3), 641-657.
  2. American Institute of Steel Construction (AISC) (2016), Design Specification for Steel Structural Buildings; Chicago, Il, USA.
  3. American Iron and Steel Institute (AISI) (2004), Supplement 2004 to the North American Specifications for the Design of Cold-Formed Steel Structural Members; Washington DC, USA.
  4. Ban, H., Shi, G., Shi, Y. and Wang, Y. (2012), "Overall buckling behavior of 460 MPa high strength steel columns: Experimental investigation and design method", J. Constr. Steel Res., 74, 140-150. https://doi.org/10.1016/j.jcsr.2012.02.013
  5. Davids, A.J. and Hancock, G.J. (1986), "Compression tests of long welded I-section columns", J. Struct. Eng., ASCE, 112(10), 2281-2297. https://doi.org/10.1061/(ASCE)0733-9445(1986)112:10(2281)
  6. Degee, H., Detzel, A. and Kuhlmann, U. (2008), "Interaction of global and local buckling in welded RHS compression members", J. Constr. Steel Res., 64, 755-765. https://doi.org/10.1016/j.jcsr.2008.01.032
  7. European Committee for Standardisation (ECS) (2003), Eurocode 3: Design of Steel Structures; Brussels, Belgium.
  8. European Committee for Standardisation (ECS) (2006), Eurocode 3: Design of Steel Structures, Part 1-5: Plated Structural Elements; Brussels, Belgium.
  9. FEA Co., Ltd. (2012), LUSAS Element Reference Manual & User's Manual (version 14.7); London, UK.
  10. Gao, L., Sun, H., Jin, F. and Fan, H. (2009), "Load-carrying capacity of high-strength steel box-sections I: Stub columns", J. Constr. Steel Res., 65, 918-924. https://doi.org/10.1016/j.jcsr.2008.07.002
  11. Gheidi, A., Mirtaheri, M., Zandi, A.P. and Alanjari, P. (2011), "Effect of filler material on local and global behavior of buckling-restrained braces", Struct. Des. Tall Special Build., 20(6), 700-710. https://doi.org/10.1002/tal.555
  12. Im, S.W., Ko, S.K. and Chang, I.H. (2001), "A study on the characteristics of high strength steel (SM570) plates in compression members", J. Korean Soc. Steel Constr., KSSC, 13(3), 222-232. [In Korean]
  13. Im, S.W., Kim, Y.S. and Chang, I.H. (2005), "A study on the characteristics of SM570TMC plates in compression members", J. Korean Soc. Steel Const., KSSC, 17(3), 357-363. [In Korean]
  14. Jiang, J., Chiew, S.P., Lee, C.K. and Tiong, P.L.Y. (2017), "An experimental study on residual stresses of high strength steel box columns", J. Constr. Steel Res., 130, 12-21.
  15. Kenyon, D., Shu, Y., Fan, X., Reddy, S. and Lew, A.J. (2018), "Parametric design of multi-cell thin-walled structures for improved crashworthiness with stable progressive buckling mode", Thin-Wall. Sruct., 131, 76-87. https://doi.org/10.1016/j.tws.2018.06.031
  16. Khan, M., Paradowska, A., Uy, B., Mashiri, F. and Tao, Z. (2016), "Residual stresses in high strength steel welded box sections", J. Constr. Steel Res., 116, 55-64.
  17. Kim, T.S., Lee, M.J., Oh, Y.S., Lee, K.M. and Kim, D.H. (2012), "A study on compressive strength of built-up H shaped columns fabricated with HSA800 high performance steels", J. Korean Soc. Steel Constr., KSSC, 24(6), 627-636. [In Korean] https://doi.org/10.7781/kjoss.2012.24.6.627
  18. Kim, D.K., Lee, C.H., Han, K.H., Kim, J.H., Lee, S.E. and Sim, H.B. (2014), "Strength and residual stress evaluation of stub columns fabricated from 800 MPa high strength steel", J. Constr. Steel Res., 102, 111-120.
  19. Kim, D.K., Lee, C.H., Han, K.H., Kim, J.H., Lee, S.E. and Kim, J.W. (2015), "Buckling Strength of Concentrically Loaded High-Strength Steel Columns with Intermediate Slenderness", J. Korean Soc. Steel Constr., KSSC, 27(4), 377-386. [In Korean] https://doi.org/10.7781/kjoss.2015.27.4.377
  20. Korean Institute of Steel Construction (KISC) (2009), Design Specifications for Steel Structures-Load and Resistance Factor Design, Department of Land and Transportation, Seoul, Korea.
  21. Kwon, Y.B. (2000), Buckling Analysis Program (BAP) User's Manual (version 2.0); Department of Civil Engineering, Yeungnam University, Gyeongsan, Korea.
  22. Kwon, Y.B. (2014), "Development of direct strength method for welded section members", Thin-Wall. Struct., 81, 121-131.
  23. Kwon, Y.B. and Seo, E.G. (2013), "Prediction of the compressive strength of welded RHS columns undergoing buckling interaction", Thin-Wall. Struct., 68, 141-55. https://doi.org/10.1016/j.tws.2013.03.009
  24. Kwon, Y.B., Kim, N.G. and Hancock, G.J. (2007), "Compression Tests of Welded Section Columns Undergoing Buckling Interaction", J. Constr. Steel Res., 63, 1590-1602. https://doi.org/10.1016/j.jcsr.2007.01.011
  25. Lee, K.M., Lee, M.J., Oh, Y.S. and Kim, T.S. (2012), "Local buckling behavior of stub H-shaped columns fabricated with HSA800 high performance steels under concentric loading", J. Korean Soc. Steel Constr., KSSC, 25(3), 289-297. [In Korean] https://doi.org/10.7781/kjoss.2013.25.3.289
  26. Lee, K.M., Lee, M.J., Oh, Y.S., Yang, Y. and Oh, K.Y. (2015), "A comparative study on stub columns with various steel grades subjected to concentric axial loading", Int. J. Steel Struct., KSSC, 15(1), 103-114. https://doi.org/10.1007/s13296-015-3007-3
  27. Li, T.J., Li, G.Q. and Wang, Y.B. (2015), "Residual stress tests of welded Q690 high strength steel box and H-sections", J. Constr. Steel Res., 115, 283-289. https://doi.org/10.1016/j.jcsr.2015.08.040
  28. Li, T.J., Li, G.Q., Chan, S.L. and Wang, Y.B. (2016), "Behavior of Q690 high-strength steel columns: Part 1: Experimental", J. Constr. Steel Res., 123, 18-30. https://doi.org/10.1016/j.jcsr.2016.03.026
  29. Martins, A.D., Dinis, P.B. and Camotim, D. (2016), "On the influence of local-distortional interaction in behavior and design of cold-formed steel web stiffened lipped channel columns", Thin-Wall. Struct., 101, 181-204. https://doi.org/10.1016/j.tws.2015.11.021
  30. Mirtaheri, S.M. and Zoghi, M.A. (2016), "Design guides to resist progressive collapse of steel structures", Steel Compos. Struct., Int. J., 20(2), 357-378.
  31. Mirtaheri, S.M., Nazeryan, M., Bahrani, K.M., Nooralizadeh, A., Montazerian, L. and Naserifard, M. (2017), "Local and global buckling condition of all-steel buckling restrained braces", Steel Compos. Struct., Int. J., 23(2), 217-228.
  32. Miyachi, K., Nakamura, S. and Manda, A. (2012), "Progressive collapse analysis of steel truss bridges and evaluation of ductility", J. Constr. Steel Res., 78, 192-200. https://doi.org/10.1016/j.jcsr.2012.06.015
  33. Paik, J.K. and Kim, B.J. (2008), "Progressive collapse analysis of thin-walled box columns", Thin-Wall. Struct., 46, 541-550. https://doi.org/10.1016/j.tws.2007.10.004
  34. Park, J.W. and Yoo, J.H. (2013), "Axial load tests and load capacity of slender SHS stub columns strengthened with carbon fiber reinforced polymers", Steel Compos. Struct., Int. J., 15(2), 131-150. https://doi.org/10.12989/scs.2013.15.2.131
  35. Pham, C.H. and Hancock, G.J. (2012), "Elastic buckling of coldformed channel sections in shear", Thin-Wall. Struct., 61, 22-26. https://doi.org/10.1016/j.tws.2012.05.004
  36. Rasmussen, K.J.R. and Hancock, G.J. (1989), "Compression tests of welded channel section columns", J. Struct. Eng., ASCE, 115(4), 789-808. https://doi.org/10.1061/(ASCE)0733-9445(1989)115:4(789)
  37. Rasmussen, K.J.R. and Hancock, G.J. (1992), "Plate slenderness limits for high strength steel sections", J. Constr. Steel Res., 23, 73-96. https://doi.org/10.1016/0143-974X(92)90037-F
  38. Rasmussen, K.J.R. and Hancock, G.J. (1995), "Tests of high strength steel columns", J. Constr. Steel Res., 34, 27-52.
  39. Schafer, B.W. and Pekoz, T. (1998), "Direct strength prediction of cold-formed steel members using numerical elastic buckling solutions", Thin-Wall. Struct., Res. Develop., (Eds. by N.E. Shanmugan, J.Y.R. Liew and V. Thevendran), Elsevier, pp. 137-144.
  40. Shen, H. (2014), "On the direct strength and effective yield strength method design of medium and high strength steel welded square section columns with slender plate elements", Steel Compos. Struct., Int. J., 17(4), 497-516. https://doi.org/10.12989/scs.2014.17.4.497
  41. Shi, G., Ban, H. and Bijlaard, F.S.K. (2012), "Tests of numerical study of ultra-high strength steel columns with end restraints", J. Constr. Steel Res., 70, 236-247. https://doi.org/10.1016/j.jcsr.2011.10.027
  42. Shi, G., Zhou, W., Bai, Y. and Lin, C. (2014), "Local buckling of 460 MPa high strength steel welded section stub columns under axial compression", J. Constr. Steel Res., 100, 60-70. https://doi.org/10.1016/j.jcsr.2014.04.027
  43. Standard Australia (2005), Cold-Formed Steel Structures AS/NZS 4600; Sydney, NSW, Australia.
  44. Usami, T. and Fukumoto, Y. (1982), "Local and Overall Buckling of Welded Box Columns", J. Struct. Eng., ASCE, 108(ST3), 525-542.
  45. Usami, T. and Fukumoto, Y. (1984), "Welded Box Column Members", J. Struct. Eng., ASCE, 110(10), 2457-2470. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:10(2457)
  46. Wang, Y.B., Li, G.Q. and Chen, S.W. (2012), "Residual Stresses in Welded Flame-cut High strength Steel H-Sections", J. Constr. Steel Res., 79, 159-165.
  47. Winter, G. (1947), "Strength of thin steel compression flanges", Transactions, ASCE, 112(2305), 527-576.
  48. Yang, B., Nie, S., Xiong, G., Hu, Y., Bai, J., Zhang,W. and Dai, G. (2016), "Residual stresses in welded I-shaped sections fabricated from Q460GJ structural steel plates", J. Constr. Steel Res., 122, 261-273. https://doi.org/10.1016/j.jcsr.2016.03.029
  49. Yoo, J.H., Kim, J.W., Yang, J.K., Kang, J.W. and Lee, D.W. (2012), " Local buckling of built-up square tubular compression members fabricated with HSA800 high performance steels under concentric axial loading", J. Korean Soc. Steel Constr., KSSC, 24(4), 435-442. [In Korean] https://doi.org/10.7781/kjoss.2012.24.4.435
  50. Young, B., Silvestre, N. and Camotim, D. (2013), "Cold-formed steel lipped channel columns influenced by local-distortional interaction; strength and DSM design", J. Struct. Eng., ASCE, 139(6), 1059-1074. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000694
  51. Zhang, X., Zhao, M. and Chiew, S.P. (2016), "Residual stress of cold-formed thick-walled steel rectangular hollow sections", Steel Compos. Struct., Int. J., 20(4), 837-853.