DOI QR코드

DOI QR Code

Investigation of nuclear material using a compact modified uniformly redundant array gamma camera

  • Lee, Taewoong (Health Science Research Center, Korea University) ;
  • Kwak, Sung-Woo (Korea Institute of Nuclear Non-proliferation and Control) ;
  • Lee, Wonho (School of Health and Environmental Science)
  • Received : 2017.09.01
  • Accepted : 2018.04.04
  • Published : 2018.08.25

Abstract

We developed a compact gamma camera based on a modified uniformly redundant array coded aperture to investigate the position of a $UO_2$ pellet emitting characteristic X-rays (98.4 keV) and ${\gamma}-rays$ (185.7 keV). Experiments using an only-mask method and an antimask subtractive method were conducted, and the maximum-likelihood expectation maximization algorithm was used for image reconstruction. The images obtained via the antimask subtractive method were compared with those obtained using the only-mask method with regard to the signal-to-noise ratio. The reconstructed images of the antimask subtractive method were superior. The reconstructed images of the characteristic X-rays and the ${\gamma}-rays$ were combined with the obtained image using the optical camera. The combined images showed the precise position of the $UO_2$ pellet. According to the self-absorption ratios of the nuclear material and the minimum number of effective events for image reconstruction, we estimated the minimum detection time depending on the amount of nuclear material.

Keywords

References

  1. R. Redus, M. Squillante, J.S. Gordon, P. Bennett, G. Entine, An imaging nuclear survey system, IEEE Trans. Nucl. Sci. 43 (3) (1996) 1827-1831. https://doi.org/10.1109/23.507230
  2. M. Woodring, D. Beddingfield, D. Souza, G. Entine, M. Squillante, J. Christian, A. Kogan, Advanced multi-dimensional imaging of gamma-ray radiation, Nucl. Instrum. Methods Phys. Res. A 505 (2003) 415-419. https://doi.org/10.1016/S0168-9002(03)01111-2
  3. W. Lee, G. Cho, Pinhole collimator design for nuclear survey system, Ann. Nucl. Energy 29 (2002) 2029-2040. https://doi.org/10.1016/S0306-4549(02)00031-2
  4. S.V. Guru, Z. He, J.C. Ferreria, D.K. Wehe, G.F. Knoll, A high energy gamma camera using a multiple hole collimator and PSPMT, Nucl. Instrum. Methods Phys. Res. A 353 (1994) 328-333. https://doi.org/10.1016/0168-9002(94)91668-3
  5. L. Mertz, N.O. Young, Fresnel transformation of images, Proc. Intl. Conf. Opt. Instrum. (1961) 305-310.
  6. E.E. Fenimore, T.M. Cannon, Coded aperture imaging with uniformly redundant arrays, Appl. Opt. 17 (3) (1978) 337-347. https://doi.org/10.1364/AO.17.000337
  7. W.R. Cook, M. Finger, T.A. Prince, E.C. Stone, Gamma-ray imaging with a rotating hexagonal uniformly redundant array, IEEE Trans. Nucl. Sci. NS-31 (1998) 771-775.
  8. S.R. Gottesman, E.E. Fenimore, New family of binary arrays for coded aperture imaging, Appl. Opt. 28 (20) (1989) 4344-4352. https://doi.org/10.1364/AO.28.004344
  9. P.T. Durrant, M. Dallimore, I.D. Jupp, D. Ramsden, The application of pinhole and coded aperture imaging in the nuclear environment, Nucl. Instrum. Methods Phys. Res. A 422 (1999) 667-671. https://doi.org/10.1016/S0168-9002(98)01014-6
  10. J. Braga, T. Villela, U.B. Jayanthi, F. D'Amico, J.A. Neri, A new mask-antimask coded-aperture telescope for hard X-ray astronomy, Exp. Astron. 2 (2) (1991) 101-113. https://doi.org/10.1007/BF00576323
  11. R. Accorsi, F. Gasparini, R.C. Lanza, Optimal coded aperture patterns for improved SNR in nuclear medicine imaging, Nucl. Instrum. Methods Phys. Res. A 474 (2001) 273-284. https://doi.org/10.1016/S0168-9002(01)01326-2
  12. M.J. Cieslak, K.A.A. Gamage, R. Glover, Coded-aperture imaging systems: past, present and future development e a review, Radiatt Meas. 92 (2016) 59-71. https://doi.org/10.1016/j.radmeas.2016.08.002
  13. K. Lange, R. Carson, EM reconstruction algorithms for emission and transmission tomography, J. Comput. Assist. Tomogr 8 (2) (1997) 306-316.
  14. M.J. Berger, J.H. Hubbell, S.M. Seltzer, J. Chang, J.S. Coursey, R. Sukumar, D.S. Zucker, K. Olsen, XCOM: Photon Cross Sections Database, NBSIR 87-3597. Available at: www.nist.gov/pml/xcom-photon-cross-sections-database.
  15. W.D. Ruhter, R. Gunnink, Application of cadmium-zinc-telluride detectors in 235U enrichment measurements, Nucl. Instrum. Methods Phys. Res. A 353 (1994) 716-718. https://doi.org/10.1016/0168-9002(94)91760-4
  16. T. Lee, W. Lee, Compact hybrid gamma camera with a coded aperture for investigation of nuclear materials, Nucl. Instrum. Methods Phys. Res. A 767 (2014) 5-13.
  17. J.P. Francois, On the calculation of the self-absorption in spherical radioactive sources, Nucl. Instrum. Methods Phys. Res. A 177 (1967) 153-156.
  18. G.F. Knoll, Radiation Detection and Measurement, fourth ed., Wiley, New York, 2010.
  19. R.Q. Richard, C.M. Hopper, Calculation of minimum critical mass of fissile nuclides, Nucl. Sci. Eng. 158 (2008) 203-209. https://doi.org/10.13182/NSE08-A2747
  20. M.S.E. Naschie, A. Hussein, On the eigenvalue of nuclear reaction and selfweight buckling, Chaos Solitons Fractals 11 (2000), 815-815. https://doi.org/10.1016/S0960-0779(99)00106-X

Cited by

  1. Gamma-ray modulation properties of tungsten coded apertures for a novel mixed-field imaging system vol.14, pp.2, 2018, https://doi.org/10.1088/1748-0221/14/02/p02007
  2. High performance γ-ray imager using dual anti-mask method for the investigation of high-energy nuclear materials vol.53, pp.7, 2018, https://doi.org/10.1016/j.net.2021.01.027
  3. Localizing hot spots in Poisson radiation data matrices: nonnegative tensor factorization and phase congruency vol.8, pp.1, 2018, https://doi.org/10.1186/s40537-021-00510-1