DOI QR코드

DOI QR Code

Enhanced reutilization value of shrimp-shell waste via fed-batch biodegradation with higher production of reducing sugar, antioxidant, and DNA protective compounds

  • Rashid, Harun Ar (KOICA-PKNU International Graduate Program of Fisheries Science, Graduate School of Global Fisheries, Pukyong National University) ;
  • Jung, Hyun Yi (Department of Biotechnology, Pukyong National University) ;
  • Kim, Joong Kyun (KOICA-PKNU International Graduate Program of Fisheries Science, Graduate School of Global Fisheries, Pukyong National University)
  • Received : 2017.12.12
  • Accepted : 2018.08.27
  • Published : 2018.10.31

Abstract

As a process for commercial application, production of reducing sugar, antioxidant, and DNA protective compounds from shrimp-shell powder was investigated in a fed-batch biodegradation using Bacillus cereus EW5. The fed-batch biodegradation was operated in a 5-L bioreactor for 96 h according to three times pulse-feeding strategy. On the basis of the equal working volume (3 L), the fed-batch biodegradation showed a better production of the target compounds than the batch biodegradation, with higher cell density and shortened biodegradation period. The maximum values of the target compounds were 0.297 mg/mL of reducing sugar, 92.35% DPPH radical scavenging activity, 98.16% ABTS radical scavenging activity, and 1.55 reducing power at $A_{700}$, which were approximately 12.1, 3.4, 5.2, and 8.4% enhanced, respectively, compared with those obtained from the batch biodegradation. The fed-batch culture supernatant also showed the enhanced DNA damage inhibition activity than the batch culture supernatant. As a result, the fed-batch biodegradation accompanied by high cell density could produce more useful compounds, enabling an increase in the reutilization value of shrimp-shell waste.

Keywords

References

  1. Abou-taleb KA. Enhancing production of amino acids from Bacillus spp. using batch and fed-batch fermentation strategies. Br Microbiol Res J. 2015;5:257-72. https://doi.org/10.9734/BMRJ/2015/12447
  2. Annamalai N, Rajeswari MV, Vijayalakshmi S, Balasubramanian T. Purification and characterization of chitinase from Alcaligenes faecalis AU02 by utilizing marine wastes and its antioxidant activity. Ann Microbiol. 2011;61:801-7. https://doi.org/10.1007/s13213-011-0198-5
  3. Azam MS, Kim EJ, Yang HS, Kim JK. High antioxidant and DNA protection activities of N-acetylglucosamine (GlcNAc) and chitobiose produced by exolytic chitinase from Bacillus cereus EW5. SpringerPlus. 2014;3:354-64. https://doi.org/10.1186/2193-1801-3-354
  4. Bahri-Sahloul R, Fredj RB, Boughalleb N, Shriaa J, Saguem S, Hilbert J, Trotin F, Ammar S, Bouzid S, Harzallah-Skhiri F. Phenolic composition and antioxidant and antimicrobial activities of extracts obtained from Crataegus azarolus L. var. arona (Wild) Batt. Ovaries Calli J Bot. 2014;2014:1-11.
  5. Bajaj M, Freiberg A, Winter J, Xu Y, Gallert C. Pilot-scale chitin extraction from shrimp shell waste by deproteination and decalcification with bacterial enrichment cultures. Biomass Bioenergy. 2016;91:37-47. https://doi.org/10.1016/j.biombioe.2016.04.015
  6. Banik RM, Prakash M. Laundry detergent compatibility of the alkaline protease from Bacillus cereus. Microbiol Res. 2004;159:135-40. https://doi.org/10.1016/j.micres.2004.01.002
  7. Bersuder P, Hole M, Smith G. Antioxidant from a heated histidine-glucose model system. I: investigation of the antioxidant role of histidine and isolation of antioxidants by high performance liquid chromatography. J Am Oil Chem Soc. 1998;75:181-7. https://doi.org/10.1007/s11746-998-0030-y
  8. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature. 1958;181:1199-200. https://doi.org/10.1038/1811199a0
  9. Bretz K, Kabasci S. Feed-control development for succinic acid production with Anaerobiospirillum succiniciproducens. Biotechnol Bioeng. 2012;109:1187-92. https://doi.org/10.1002/bit.24387
  10. Chen JK, Shen CR, Liu CL. N-acetylglucosamine: production and applications. Mar Drugs. 2010;8:2493-516. https://doi.org/10.3390/md8092493
  11. Chen JK, Shen CR, Yeh CH, Fang BS, Huang T, Liu CL. N-acetyleglucosamine obtained from chitin by chitin degrading factors in Chitinbacter tainanesis. Int J Mol Sci. 2011;12:1187-95. https://doi.org/10.3390/ijms12021187
  12. Cheng NG, Hasan M, Kumoro AC, Ling CF, Tham M. Production of ethanol by fed-batch fermentation. Pertanika J Sci Technol. 2009;17:399-408.
  13. Gao Y, Zhao J, Zu Y, Fu Y, Liang L, Lou M, Wang W, Efferth T. Antioxidant properties, superoxide dismutase and glutathione reductase activities in HepG2 cells with a fungal endophyte producing apigenin from pigeon pea [ Cajanus cajan (L.) Millsp.]. Food Res Int. 2012;49:147-52. https://doi.org/10.1016/j.foodres.2012.08.001
  14. Ghorbel-Bellaaj O, Hmidet N, Jellouli K, Younes I, Maalej H, Hachicha R, Nasri M. Shrimp waste fermentation with Pseudomonas aeruginosa A2: optimization of chitin extraction conditions through Plackett-Burman and response surface methodology approaches. Int J Biol Macromol. 2011;48:596-602. https://doi.org/10.1016/j.ijbiomac.2011.01.024
  15. Ghorbel-Bellaaj O, Jridi M, Khaled HB, Jellouli K, Nasri M. Bioconversion of shrimp shell waste for the production of antioxidant and chitosan used as fruit juice clafier. Int J Food Sci Tech. 2012;47:1835-41. https://doi.org/10.1111/j.1365-2621.2012.03039.x
  16. Gwon BK, Kim JK. Feasibility study on production of liquid fertilizer in a 1 m3 reactor using fishmeal wastewater for commercialization. Environ Eng Res. 2012;17:3-8. https://doi.org/10.4491/eer.2012.17.1.003
  17. Hadiyanto H, Ariyanti D, Aini AP, Pinundi DS. Batch and fed-batch fermentation system on ethanol production from whey using Kluyveromyces marxianus. Int J Renew Energy Dev. 2013;2:127-31.
  18. Halder SK, Jana A, Das A, Paul T, Mohapatra PKD, Pati BR, Mondal KC. Appraisal of antioxidant, anti-hemolytic and DNA shielding potentials of chitosaccharides produced innovatively from shrimp shell by sequential treatment with immobilized enzymes. Food Chem. 2014;158:325-34. https://doi.org/10.1016/j.foodchem.2014.02.115
  19. Halder SK, Maity C, Jana A, Das A, Paul T, Mohapatra PKD, Pati BR, Mondal KC. Proficient biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int Biodeterior Biodegrad. 2013;79:88-97. https://doi.org/10.1016/j.ibiod.2013.01.011
  20. Imoto T, Yagishita K. A simple activity measurement of lysozome. Agric Biol Chem. 1971;35:1154-6. https://doi.org/10.1080/00021369.1971.10860050
  21. Kim EY, Kim YR, Nam TJ, Kong IS. Antioxidant and DNA protection activities of a glycoprotein isolated from a seaweed, Saccharina japonica. Int J Food Sci Tech. 2012;47:1020-7. https://doi.org/10.1111/j.1365-2621.2012.02936.x
  22. Kim JK, Dao VT, Kong IS, Lee HH. Identification and characterization of microorganisms from earthworm viscera for the conversion of fish wastes into liquid fertilizer. Bioresour Technol. 2010;101:5131-6. https://doi.org/10.1016/j.biortech.2010.02.001
  23. Lee JC, Kim HR, Kim I, Jang YS. Antioxidant property of an ethanol extract of the stem of Opuntiaficus-indica var. saboten. J Agric Food Chem. 2002;50:6940-496.
  24. Liang TW, Chen YJ, Yen YH, Wang SL. The antitumor activity of the hydrolysates of chitinous materials hydrolyzed by crude enzyme from Bacillus amyloliquefaciens V656. Process Biochem. 2007;42:527-34. https://doi.org/10.1016/j.procbio.2006.10.005
  25. Lira GM, Lopez AMQ, Firmino GO, Santos SD, Bezerra RS. Total carotenoids and antioxidant activity of fillets and shells (in natura or cooked) of "Vila Franca" shrimp (Litopenaeus schmitti) in different intervals of storage under freezing. Cienc Agrotec. 2017;41:94-103. https://doi.org/10.1590/1413-70542017411023616
  26. Manni L, Bellaaj OG, Jellouli K, Younes I, Nasri M. Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl Biochem Biotechnol. 2010;162:345-57. https://doi.org/10.1007/s12010-009-8846-y
  27. Maruthiah T. Characterization of haloalkalophilic organic solvent tolerant protease for chitin extraction from shrimp shell waste. Int J Biol Macromol. 2017;97:552-60. https://doi.org/10.1016/j.ijbiomac.2017.01.021
  28. Rajdeep K, Krishna P. Biodegradation of tiger prawn shell by lactic acid fermentation. J Environ Res Develop. 2012;7:936-45.
  29. Rao MS, Munoz J, Slevens WF. Critical factors in chitin production by fermentation of shrimp biowaste. Appl Microbiol Biotechnol. 2000;54:808-13. https://doi.org/10.1007/s002530000449
  30. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Riceevans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999;26:1231-7. https://doi.org/10.1016/S0891-5849(98)00315-3
  31. Sachindra NM, Bhaskar N. In vitro antioxidant activity of liquor from fermented shrimp biowaste. Bioresour Technol. 2008;99:9013-6. https://doi.org/10.1016/j.biortech.2008.04.036
  32. Saenjum C, Chaiyavat C, Kadchumsang S, Chansakaow S, Suttajit M. Antioxidant activity and protective effects on DNA damage of Caesalpinia sappan L. extract. J Med Plants Res. 2010;4:1594-600.
  33. Salehmin MNI, Annuar MSM, Chisti Y. High cell density fed-batch fermentation for the production of a microbial lipase. Biochem Eng J. 2014;85:8-14. https://doi.org/10.1016/j.bej.2014.01.006
  34. Sila A, Ayed-Ajmi Y, Sayari N, Nasri M, Martinez-Alvarez O, Bougatef A. Antioxidant and anti-proliferative activities of astaxanthin extracted from the shrimp waste of deep water pink shrimp (Parapenaeus longirostris). Nat Prod J. 2013;3:82-9.
  35. Sorokulova I, Krumnow A, Globa L, Vodyanoy V. Efficient decomposition of shrimp shell waste using Bacillus cereus and Exiguobacterium acetylicum. J Ind Microbiol Biotechnol. 2009;36:1123-6. https://doi.org/10.1007/s10295-009-0587-y
  36. Sujeetha M, Sharmila S, Jayanthi J, Ragunathan MG. Antioxidant property of some extracts derived from the mud crab Scylla serrata. Int J Phytopharmacol. 2015;6:111-3.
  37. Suresh PV. Biodegradation of shrimp processing bio-waste and concomitant production of chitinase enzyme and N-acetyle-D-glucosamine by marine bacteria: production and process optimization. World J Microbiol Biotechnol. 2012;28:2945-62. https://doi.org/10.1007/s11274-012-1106-2
  38. Talent JM, Gracy RW. Pilot study of oral polymetric N-acetyl-D-glucosamine as a potential treatment for patients with osteoarthritis. Clin Ther. 1996;18:1184-90. https://doi.org/10.1016/S0149-2918(96)80073-7
  39. Tsai GJ, Wu ZY, Su WH. Antibacterial activity of a chitooligosaccharide mixture prepared by cellulase digestion of shrimp chitosan and its application to milk preservation. J Food Prot. 2000;63:747-52. https://doi.org/10.4315/0362-028X-63.6.747
  40. Walke S, Srivastava G, Nikalje M, Doshi J, Kumar R, Ravetkar S, Doshi P. Physicochemical and functional characterization of chitosan prepared from shrimp shells and investigation of its antibacterial, antioxidant and tetanus toxoid entrapment efficiency. Int J Pharm Sci Rev Res. 2014;26:215-25.
  41. Wang SL, Chen SJ, Wang CL. Purification and characterization of chitinases and chitosanases from a new species strain Pseudomonas sp. TKU015 using shrimp shells as a substrate. Carbohydr Res. 2008a;343:1171-9. https://doi.org/10.1016/j.carres.2008.03.018
  42. Wang SL, Chen TR, Liang TW, Wu PC. Conversion and degradation of shellfish wastes by Bacillus cereus TKU018 fermentation for the production of chitosanases and bioactive materials. Biochem Eng J. 2009;48:111-7. https://doi.org/10.1016/j.bej.2009.08.013
  43. Wang SL, Li JY, Liang TW, Hsieh JL, Tseng WN. Conversion of shrimp shell by using Serratia sp. TKU017 fermentation for the production of enzymes and antioxidants. J Microbiol Biotechnol. 2010;20:117-26.
  44. Wang SL, Lin HT, Liang TW, Chen YJ, Yen YH, Guo SP. Reclamation of chitinous materials by bromelain for the preparation of antitumor and antifungal materials. Bioresour Technol. 2008b;99:4386-93. https://doi.org/10.1016/j.biortech.2007.08.035
  45. Wang SL, Liu CP, Liang TW. Fermented and enzymatic production of chitin/chitosan oligosaccharides by extracellular chitinases from Bacillus cereus TKU027. Carbohydr Polym. 2012;90:1305-13. https://doi.org/10.1016/j.carbpol.2012.06.077
  46. Wang SL, Yeh PY. Purification and characterization of a chitosanase from a nattokinase producing strain Bacillus subtilis TKU007using shrimp powder as a medium. Process Biochem. 2008;43:132-8. https://doi.org/10.1016/j.procbio.2007.11.002
  47. Wu N, Zu YG, Fu YJ, Kong Y, Zhao JT, Li XJ, Wink M, Efferth T. Antioxidant activities and xanthine oxidase inhibitory effects of extracts and main polyphenolic compounds obtained from Geranium sibiricum L. J Agric Food Chem. 2010;58:4737-43. https://doi.org/10.1021/jf904593n

Cited by

  1. Trends in shrimp processing waste utilization: An industrial prospective vol.103, pp.None, 2020, https://doi.org/10.1016/j.tifs.2020.07.001
  2. Green remediation of the potential hazardous shellfish wastes generated from the processing industries and their bioprospecting vol.24, pp.None, 2018, https://doi.org/10.1016/j.eti.2021.101979